IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i11p7245-7265d42215.html
   My bibliography  Save this article

Evaluation of Artificial Neural Network-Based Temperature Control for Optimum Operation of Building Envelopes

Author

Listed:
  • Jin Woo Moon

    (Department of Building & Plant Engineering, Hanbat National University, Daejeon 305-719, Korea)

  • Ji-Hyun Lee

    (Graduate School of Culture Technology, Korea Advanced Institute of Science & Technology, Daejeon 305-701, Korea)

  • Sooyoung Kim

    (Department of Interior Architecture & Built Environment, Yonsei University, Seoul 120-749, Korea)

Abstract

This study aims at developing an indoor temperature control method that could provide comfortable thermal conditions by integrating heating system control and the opening conditions of building envelopes. Artificial neural network (ANN)-based temperature control logic was developed for the control of heating systems and openings at the building envelopes in a predictive and adaptive manner. Numerical comparative performance tests for the ANN-based temperature control logic and conventional non-ANN-based counterpart were conducted for single skin enveloped and double skin enveloped buildings after the simulation program was validated by comparing the simulation and the field measurement results. Analysis results revealed that the ANN-based control logic improved the indoor temperature environment with an increased comfortable temperature period and decreased overshoot and undershoot of temperatures outside of the operating range. The proposed logic did not show significant superiority in energy efficiency over the conventional logic. The ANN-based temperature control logic was able to maintain the indoor temperature more comfortably and with more stability within the operating range due to the predictive and adaptive features of ANN models.

Suggested Citation

  • Jin Woo Moon & Ji-Hyun Lee & Sooyoung Kim, 2014. "Evaluation of Artificial Neural Network-Based Temperature Control for Optimum Operation of Building Envelopes," Energies, MDPI, vol. 7(11), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7245-7265:d:42215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/11/7245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/11/7245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    2. Jin Woo Moon & Kyung-Il Chin & Sooyoung Kim, 2013. "Optimum Application of Thermal Factors to Artificial Neural Network Models for Improvement of Control Performance in Double Skin-Enveloped Buildings," Energies, MDPI, vol. 6(8), pages 1-23, August.
    3. Jin Woo Moon & Jae D. Chang & Sooyoung Kim, 2013. "Determining Adaptability Performance of Artificial Neural Network-Based Thermal Control Logics for Envelope Conditions in Residential Buildings," Energies, MDPI, vol. 6(7), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edorta Carrascal-Lekunberri & Izaskun Garrido & Bram Van der Heijde & Aitor J. Garrido & José María Sala & Lieve Helsen, 2017. "Energy Conservation in an Office Building Using an Enhanced Blind System Control," Energies, MDPI, vol. 10(2), pages 1-23, February.
    2. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Chatzis, Georgios V. & Biskas, Pandelis N. & Keranidis, Stratos D., 2021. "Minimization of natural gas consumption of domestic boilers with convolutional, long-short term memory neural networks and genetic algorithm," Applied Energy, Elsevier, vol. 299(C).
    3. Savadkoohi, Marjan & Macarulla, Marcel & Casals, Miquel, 2023. "Facilitating the implementation of neural network-based predictive control to optimize building heating operation," Energy, Elsevier, vol. 263(PB).
    4. López-Pérez, Luis Adrián & Flores-Prieto, José Jassón, 2023. "Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    3. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    4. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    5. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    6. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    7. Wu, Sheng-Ju & Shiah, Sheau-Wen & Yu, Wei-Lung, 2009. "Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network," Renewable Energy, Elsevier, vol. 34(1), pages 135-144.
    8. Ahmadi, Mohammadali, 2023. "Data-driven approaches for predicting wax deposition," Energy, Elsevier, vol. 265(C).
    9. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    10. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    11. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    12. Di Lullo, G. & Oni, A.O. & Kumar, A., 2023. "The development of complex engineering models using artificial neural network-based proxy models for life cycle assessments of energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    14. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    15. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    16. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    17. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    18. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2014. "A novel dynamic modeling approach for predicting building energy performance," Applied Energy, Elsevier, vol. 114(C), pages 91-103.
    19. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    20. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7245-7265:d:42215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.