IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i11p7125-7146d41952.html
   My bibliography  Save this article

Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

Author

Listed:
  • Long Nguyen

    (Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA)

  • Kara G. Cafferty

    (Department of Biofuels and Renewable Energy Technologies, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA)

  • Erin M. Searcy

    (Department of Biofuels and Renewable Energy Technologies, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA)

  • Sabrina Spatari

    (Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA)

Abstract

To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the transport of the densified biomass, which introduces the highest variability (0.2–13 g CO 2 e/MJ) to life cycle GHG emissions. Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 g CO 2 e/MJ to 41 g CO 2 e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system.

Suggested Citation

  • Long Nguyen & Kara G. Cafferty & Erin M. Searcy & Sabrina Spatari, 2014. "Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas," Energies, MDPI, vol. 7(11), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7125-7146:d:41952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/11/7125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/11/7125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uria-Martinez, Rocio & Leiby, Paul, 2012. "Advanced Biofuels System Configuration In The U.S.: Cost And Performance Tradeoffs," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125005, Agricultural and Applied Economics Association.
    2. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "An energy analysis of ethanol from cellulosic feedstock-Corn stover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2003-2011, October.
    3. John Sheehan & Andy Aden & Keith Paustian & Kendrick Killian & John Brenner & Marie Walsh & Richard Nelson, 2003. "Energy and Environmental Aspects of Using Corn Stover for Fuel Ethanol," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 117-146, July.
    4. Adam J. Liska & Haishun Yang & Maribeth Milner & Steve Goddard & Humberto Blanco-Canqui & Matthew P. Pelton & Xiao X. Fang & Haitao Zhu & Andrew E. Suyker, 2014. "Biofuels from crop residue can reduce soil carbon and increase CO2 emissions," Nature Climate Change, Nature, vol. 4(5), pages 398-401, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxi Wang & Jingxin Wang & Xufeng Zhang & Shawn Grushecky, 2020. "Environmental and Economic Assessments and Uncertainties of Multiple Lignocellulosic Biomass Utilization for Bioenergy Products: Case Studies," Energies, MDPI, vol. 13(23), pages 1-20, November.
    2. Fengli Zhang & Dana M. Johnson & Jinjiang Wang, 2015. "Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan," Energies, MDPI, vol. 8(4), pages 1-14, April.
    3. Zhao, Yan & Damgaard, Anders & Xu, Yingjie & Liu, Shan & Christensen, Thomas H., 2019. "Bioethanol from corn stover – Global warming footprint of alternative biotechnologies," Applied Energy, Elsevier, vol. 247(C), pages 237-253.
    4. Rui Zhao & Yiyun Liu & Zhenyan Zhang & Sidai Guo & Ming-Lang Tseng & Kuo-Jui Wu, 2018. "Enhancing Eco-Efficiency of Agro-Products’ Closed-Loop Supply Chain under the Belt and Road Initiatives: A System Dynamics Approach," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    5. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    6. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    7. José Eduardo Galve & Daniel Elduque & Carmelo Pina & Carlos Javierre, 2016. "Sustainable Supply Chain Management: The Influence of Disposal Scenarios on the Environmental Impact of a 2400 L Waste Container," Sustainability, MDPI, vol. 8(6), pages 1-12, June.
    8. Baral, Nawa Raj & Quiroz-Arita, Carlos & Bradley, Thomas H., 2017. "Uncertainties in corn stover feedstock supply logistics cost and life-cycle greenhouse gas emissions for butanol production," Applied Energy, Elsevier, vol. 208(C), pages 1343-1356.
    9. Sabrina Spatari & Alexander Stadel & Paul R. Adler & Saurajyoti Kar & William J. Parton & Kevin B. Hicks & Andrew J. McAloon & Patrick L. Gurian, 2020. "The Role of Biorefinery Co-Products, Market Proximity and Feedstock Environmental Footprint in Meeting Biofuel Policy Goals for Winter Barley-to-Ethanol," Energies, MDPI, vol. 13(9), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
    2. Pontau, Patricia & Hou, Yi & Cai, Hua & Zhen, Yi & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2015. "Assessing land-use impacts by clean vehicle systems," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 112-119.
    3. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    4. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    5. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    6. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    7. Soam, Shveta & Kapoor, Manali & Kumar, Ravindra & Borjesson, Pal & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Global warming potential and energy analysis of second generation ethanol production from rice straw in India," Applied Energy, Elsevier, vol. 184(C), pages 353-364.
    8. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    9. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    10. Khanna, Madhu & Paulson, Nick, 2016. "To Harvest Stover or Not: Is it Worth it?," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 6, February.
    11. Daniel R. Petrolia, 2008. "An Analysis of the Relationship between Demand for Corn Stover as an Ethanol Feedstock and Soil Erosion," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(4), pages 677-691.
    12. Kauffman, Nathan & Dumortier, Jerome & Hayes, Dermot J. & Brown, Robert C. & Laird, David, 2014. "Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity," ISU General Staff Papers 201404010700001488, Iowa State University, Department of Economics.
    13. Chen, Xiaoguang & Önal, Hayri, 2016. "Renewable energy policies and competition for biomass: Implications for land use, food prices, and processing industry," Energy Policy, Elsevier, vol. 92(C), pages 270-278.
    14. Ruiqing Miao & Madhu Khanna, 2017. "Effectiveness of the Biomass Crop Assistance Program: Roles of Behavioral Factors, Credit Constraint, and Program Design," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(4), pages 584-608.
    15. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    16. Zhao, Yan & Damgaard, Anders & Xu, Yingjie & Liu, Shan & Christensen, Thomas H., 2019. "Bioethanol from corn stover – Global warming footprint of alternative biotechnologies," Applied Energy, Elsevier, vol. 247(C), pages 237-253.
    17. Yin, Huajun & Zhao, Wenqiang & Li, Ting & Cheng, Xinying & Liu, Qing, 2018. "Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2695-2702.
    18. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    19. Nguyen, Trung H. & Granger, Julien & Pandya, Deval & Paustian, Keith, 2019. "High-resolution multi-objective optimization of feedstock landscape design for hybrid first and second generation biorefineries," Applied Energy, Elsevier, vol. 238(C), pages 1484-1496.
    20. Jin, Chao & Yao, Mingfa & Liu, Haifeng & Lee, Chia-fon F. & Ji, Jing, 2011. "Progress in the production and application of n-butanol as a biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4080-4106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7125-7146:d:41952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.