IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i12p6487-6507d31391.html
   My bibliography  Save this article

Improvement of the Sustainability of Existing School Buildings According to the Leadership in Energy and Environmental Design (LEED) ® Protocol: A Case Study in Italy

Author

Listed:
  • Giuliano Dall'O'

    (Architecture, Building Environment and Construction Engineering (A.B.C.) Department, Polytechnic of Milan, Via E. Bonardi 9, Milano 10133, Italy)

  • Elisa Bruni

    (SACERT, Corso di Porta Vittoria 27, Milano 20122, Italy)

  • Angela Panza

    (Architecture, Building Environment and Construction Engineering (A.B.C.) Department, Polytechnic of Milan, Via E. Bonardi 9, Milano 10133, Italy)

Abstract

School-age students spend much of their time in school buildings. The sustainability of these buildings should be a priority as better comfort with a high indoor air quality contributes to an improvement in the conditions for learning. Although new school buildings are often built with high standards of sustainability and energy efficiency, the existing school building stock is generally characterised by very poor quality. The energy retrofit of existing school buildings in recent years is part of the policies of the European Union and, consequently, of the Member States. However, rarely do these measures consider aspects other than energy. This paper proposes and discusses a feasibility study which provides a considerable improvement in the environmental quality of 14 school buildings located in northern Italy: the objective is to ensure the requirements for Leadership in Energy and Environmental Design (LEED) ® certification. The analysis considers both the technical and economic aspects. The study shows that there is a technical feasibility: the credits are between 42 and 54, moreover the major cost (the cost of building envelope and heating systems retrofit is 82.9% of the total cost) is due to the improvement of energy efficiency. The improvement of sustainability is therefore a reasonable strategy even if the application of the LEED Protocol in the Italian context involves some critical issues that are discussed in the paper.

Suggested Citation

  • Giuliano Dall'O' & Elisa Bruni & Angela Panza, 2013. "Improvement of the Sustainability of Existing School Buildings According to the Leadership in Energy and Environmental Design (LEED) ® Protocol: A Case Study in Italy," Energies, MDPI, vol. 6(12), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:12:p:6487-6507:d:31391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/12/6487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/12/6487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santamouris, M. & Balaras, C.A. & Dascalaki, E. & Argiriou, A. & Gaglia, A., 1994. "Energy consumption and the potential for energy conservation in school buildings in Hellas," Energy, Elsevier, vol. 19(6), pages 653-660.
    2. Dall'O', Giuliano & Bruni, Elisa & Sarto, Luca, 2013. "An Italian pilot project for zero energy buildings: Towards a quality-driven approach," Renewable Energy, Elsevier, vol. 50(C), pages 840-846.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Maria Congedo & Delia D’Agostino & Cristina Baglivo & Giuliano Tornese & Ilaria Zacà, 2016. "Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings," Energies, MDPI, vol. 9(10), pages 1-24, October.
    2. Castleberry, Becca & Gliedt, Travis & Greene, J. Scott, 2016. "Assessing drivers and barriers of energy-saving measures in Oklahoma’s public schools," Energy Policy, Elsevier, vol. 88(C), pages 216-228.
    3. Fabio Bisegna & Benedetta Mattoni & Paola Gori & Francesco Asdrubali & Claudia Guattari & Luca Evangelisti & Sara Sambuco & Francesco Bianchi, 2016. "Influence of Insulating Materials on Green Building Rating System Results," Energies, MDPI, vol. 9(9), pages 1-17, September.
    4. Cristina Brunelli & Francesco Castellani & Alberto Garinei & Lorenzo Biondi & Marcello Marconi, 2016. "A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings," Energies, MDPI, vol. 9(11), pages 1-15, November.
    5. Hong Sheng Huang & Chung Hwei Su & Cheng Bang Li & Ching Yuan Lin & Chun Chou Lin, 2016. "Enhancement of Fire Safety of an Existing Green Building due to Natural Ventilation," Energies, MDPI, vol. 9(3), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    2. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    3. Abdelkader Laafer & Djaffar Semmar & Abdelkader Hamid & Mahmoud Bourouis, 2021. "Thermal and Surface Radiosity Analysis of an Underfloor Heating System in a Bioclimatic Habitat," Energies, MDPI, vol. 14(13), pages 1-17, June.
    4. Miimu Airaksinen, 2011. "Energy Use in Day Care Centers and Schools," Energies, MDPI, vol. 4(6), pages 1-12, June.
    5. De Luca, Giovanna & Ballarini, Ilaria & Lorenzati, Alice & Corrado, Vincenzo, 2020. "Renovation of a social house into a NZEB: Use of renewable energy sources and economic implications," Renewable Energy, Elsevier, vol. 159(C), pages 356-370.
    6. Dimoudi, A. & Kostarela, P., 2009. "Energy monitoring and conservation potential in school buildings in the C′ climatic zone of Greece," Renewable Energy, Elsevier, vol. 34(1), pages 289-296.
    7. Liu, Xiaoling & Sun, Xiaohua & Li, Mingshan & Zhai, Yu, 2020. "The effects of demonstration projects on electric vehicle diffusion: An empirical study in China," Energy Policy, Elsevier, vol. 139(C).
    8. Giuliano Dall'O' & Valentina Belli & Mauro Brolis & Ivan Mozzi & Mauro Fasano, 2013. "Nearly Zero-Energy Buildings of the Lombardy Region (Italy), a Case Study of High-Energy Performance Buildings," Energies, MDPI, vol. 6(7), pages 1-22, July.
    9. Gaitani, N. & Lehmann, C. & Santamouris, M. & Mihalakakou, G. & Patargias, P., 2010. "Using principal component and cluster analysis in the heating evaluation of the school building sector," Applied Energy, Elsevier, vol. 87(6), pages 2079-2086, June.
    10. Ascione, Fabrizio & D'Agostino, Diana & Marino, Concetta & Minichiello, Francesco, 2016. "Earth-to-air heat exchanger for NZEB in Mediterranean climate," Renewable Energy, Elsevier, vol. 99(C), pages 553-563.
    11. Beccali, Marco & Ciulla, Giuseppina & Lo Brano, Valerio & Galatioto, Alessandra & Bonomolo, Marina, 2017. "Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy," Energy, Elsevier, vol. 137(C), pages 1201-1218.
    12. Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.
    13. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    14. Georgios Martinopoulos & Vasiliki Kikidou & Dimitrios Bozis, 2018. "Energy Assessment of Building Physics Principles in Secondary Education Buildings," Energies, MDPI, vol. 11(11), pages 1-15, October.
    15. Zhu, L. & Hurt, R. & Correa, D. & Boehm, R., 2009. "Comprehensive energy and economic analyses on a zero energy house versus a conventional house," Energy, Elsevier, vol. 34(9), pages 1043-1053.
    16. Fahd Diab & Hai Lan & Lijun Zhang & Salwa Ali, 2015. "An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part Two: A Net Zero Energy Tourist Village," Energies, MDPI, vol. 8(7), pages 1-17, July.
    17. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Liu, Di & Liu, Li-Qun & Pan, Xiao-Chuan, 2014. "Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit," Energy, Elsevier, vol. 64(C), pages 991-1001.
    18. Mihalakakou, G & Psiloglou, B & Santamouris, M & Nomidis, D, 2002. "Application of renewable energy sources in the Greek islands of the South Aegean Sea," Renewable Energy, Elsevier, vol. 26(1), pages 1-19.
    19. Georgopoulou, E. & Sarafidis, Y. & Mirasgedis, S. & Balaras, C.A. & Gaglia, A. & Lalas, D.P., 2006. "Evaluating the need for economic support policies in promoting greenhouse gas emission reduction measures in the building sector: The case of Greece," Energy Policy, Elsevier, vol. 34(15), pages 2012-2031, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:12:p:6487-6507:d:31391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.