IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i6p998-1009d12942.html
   My bibliography  Save this article

Energy Use in Day Care Centers and Schools

Author

Listed:
  • Miimu Airaksinen

    (VTT Technical Research Centre of Finland/P.O. 1000, FI-02044 VTT, Finland)

Abstract

Typically the aim in the construction process is to calculate the energy, space and cost efficiency in the design phase. These factors’ influence on decision making extends to the whole building process. How these decisions affect the use of the building and user satisfaction as well as maintenance is still not that well understood. This study analyses different schools and day care centers and their energy as well as primary energy use. The buildings are located in southern Finland. Each building has had different objectives with respect to energy efficiency in the design phase. Our objective was to find out how those decisions made in the design and construction phase have influenced the overall energy performance of the building compared to existing building stock of similar building type. The results show that the studied buildings had lower thermal energy consumption compared to existing building stock. Thus the special attention in the design phase allowed achieving the desired goal. However, for the electricity consumption such a correlation could not be found. One of the reasons could be also different service level of buildings (more equipment). Also other quality values could not be compared since such data were not available from the existing building stock. As many earlier studies have indicated users have a high influence on the energy consumption. In the future, when feed-back from the users are obtained it will be interesting to analyze the results and compare what kind of influence that user behavior will have on the overall energy consumption of the studied buildings.

Suggested Citation

  • Miimu Airaksinen, 2011. "Energy Use in Day Care Centers and Schools," Energies, MDPI, vol. 4(6), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:6:p:998-1009:d:12942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/6/998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/6/998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santamouris, M. & Balaras, C.A. & Dascalaki, E. & Argiriou, A. & Gaglia, A., 1994. "Energy consumption and the potential for energy conservation in school buildings in Hellas," Energy, Elsevier, vol. 19(6), pages 653-660.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano De Antonellis & Manuel Intini & Cesare Maria Joppolo & Calogero Leone, 2014. "Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems," Energies, MDPI, vol. 7(11), pages 1-20, November.
    2. Lizana, Jesus & Serrano-Jimenez, Antonio & Ortiz, Carlos & Becerra, Jose A. & Chacartegui, Ricardo, 2018. "Energy assessment method towards low-carbon energy schools," Energy, Elsevier, vol. 159(C), pages 310-326.
    3. Tsung-Yung Chiu & Shang-Lien Lo & Yung-Yin Tsai, 2012. "Establishing an Integration-Energy-Practice Model for Improving Energy Performance Indicators in ISO 50001 Energy Management Systems," Energies, MDPI, vol. 5(12), pages 1-16, December.
    4. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    5. Kwon Sook Park & Seiyong Kim, 2018. "Utilising Unused Energy Resources for Sustainable Heating and Cooling System in Buildings: A Case Study of Geothermal Energy and Water Sources in a University," Energies, MDPI, vol. 11(7), pages 1-8, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimoudi, A. & Kostarela, P., 2009. "Energy monitoring and conservation potential in school buildings in the C′ climatic zone of Greece," Renewable Energy, Elsevier, vol. 34(1), pages 289-296.
    2. Gaitani, N. & Lehmann, C. & Santamouris, M. & Mihalakakou, G. & Patargias, P., 2010. "Using principal component and cluster analysis in the heating evaluation of the school building sector," Applied Energy, Elsevier, vol. 87(6), pages 2079-2086, June.
    3. Beccali, Marco & Ciulla, Giuseppina & Lo Brano, Valerio & Galatioto, Alessandra & Bonomolo, Marina, 2017. "Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy," Energy, Elsevier, vol. 137(C), pages 1201-1218.
    4. Giuliano Dall'O' & Elisa Bruni & Angela Panza, 2013. "Improvement of the Sustainability of Existing School Buildings According to the Leadership in Energy and Environmental Design (LEED) ® Protocol: A Case Study in Italy," Energies, MDPI, vol. 6(12), pages 1-21, December.
    5. Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.
    6. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    7. Georgios Martinopoulos & Vasiliki Kikidou & Dimitrios Bozis, 2018. "Energy Assessment of Building Physics Principles in Secondary Education Buildings," Energies, MDPI, vol. 11(11), pages 1-15, October.
    8. Zhu, L. & Hurt, R. & Correa, D. & Boehm, R., 2009. "Comprehensive energy and economic analyses on a zero energy house versus a conventional house," Energy, Elsevier, vol. 34(9), pages 1043-1053.
    9. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Liu, Di & Liu, Li-Qun & Pan, Xiao-Chuan, 2014. "Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit," Energy, Elsevier, vol. 64(C), pages 991-1001.
    10. Mihalakakou, G & Psiloglou, B & Santamouris, M & Nomidis, D, 2002. "Application of renewable energy sources in the Greek islands of the South Aegean Sea," Renewable Energy, Elsevier, vol. 26(1), pages 1-19.
    11. Georgopoulou, E. & Sarafidis, Y. & Mirasgedis, S. & Balaras, C.A. & Gaglia, A. & Lalas, D.P., 2006. "Evaluating the need for economic support policies in promoting greenhouse gas emission reduction measures in the building sector: The case of Greece," Energy Policy, Elsevier, vol. 34(15), pages 2012-2031, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:6:p:998-1009:d:12942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.