IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i11p4683-4696d21519.html
   My bibliography  Save this article

Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method

Author

Listed:
  • Xin Cai

    (College of Mechanics and Materials, Hohai University, Nanjing 210098, China
    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

  • Jie Zhu

    (College of Mechanics and Materials, Hohai University, Nanjing 210098, China)

  • Pan Pan

    (College of Mechanics and Materials, Hohai University, Nanjing 210098, China)

  • Rongrong Gu

    (College of Mechanics and Materials, Hohai University, Nanjing 210098, China)

Abstract

This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT) blades based on the particle swarm optimization algorithm (PSO) combined with the finite element method (FEM). The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. The number and the location of layers in the spar cap and the positions of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining the above method and design model under ultimate (extreme) flap-wise load conditions. The optimization results are described and compared with the original design. It shows that the method used in this study is efficient and produces improved designs.

Suggested Citation

  • Xin Cai & Jie Zhu & Pan Pan & Rongrong Gu, 2012. "Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method," Energies, MDPI, vol. 5(11), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4683-4696:d:21519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/11/4683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/11/4683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liao, C.C. & Zhao, X.L. & Xu, J.Z., 2012. "Blade layers optimization of wind turbines using FAST and improved PSO Algorithm," Renewable Energy, Elsevier, vol. 42(C), pages 227-233.
    2. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    3. Maheri, Alireza & Noroozi, Siamak & Vinney, John, 2007. "Combined analytical/FEA-based coupled aero structure simulation of a wind turbine with bend–twist adaptive blades," Renewable Energy, Elsevier, vol. 32(6), pages 916-930.
    4. Kong, C. & Bang, J. & Sugiyama, Y., 2005. "Structural investigation of composite wind turbine blade considering various load cases and fatigue life," Energy, Elsevier, vol. 30(11), pages 2101-2114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khazar Hayat & Shafaqat Siddique & Tipu Sultan & Hafiz T. Ali & Fahed A. Aloufi & Riyadh F. Halawani, 2022. "Effect of Spar Design Optimization on the Mass and Cost of a Large-Scale Composite Wind Turbine Blade," Energies, MDPI, vol. 15(15), pages 1-17, August.
    2. Jie Zhu & Xin Cai & Rongrong Gu, 2016. "Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades," Energies, MDPI, vol. 9(2), pages 1-18, January.
    3. Lu, Liang & Wu, Haijun & Wu, Jianzhong, 2021. "A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant type exciting approach," Renewable Energy, Elsevier, vol. 174(C), pages 769-785.
    4. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    5. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    6. Asier González-González & Ismael Etxeberria-Agiriano & Ekaitz Zulueta & Fernando Oterino-Echavarri & Jose Manuel Lopez-Guede, 2014. "Pitch Based Wind Turbine Intelligent Speed Setpoint Adjustment Algorithms," Energies, MDPI, vol. 7(6), pages 1-17, June.
    7. Jie Zhu & Xin Cai & Pan Pan & Rongrong Gu, 2014. "Multi-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method," Energies, MDPI, vol. 7(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhu & Xin Cai & Pan Pan & Rongrong Gu, 2014. "Multi-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method," Energies, MDPI, vol. 7(2), pages 1-15, February.
    2. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    3. Yang, Jinshui & Peng, Chaoyi & Xiao, Jiayu & Zeng, Jingcheng & Yuan, Yun, 2012. "Application of videometric technique to deformation measurement for large-scale composite wind turbine blade," Applied Energy, Elsevier, vol. 98(C), pages 292-300.
    4. Lu, Liang & Wu, Haijun & Wu, Jianzhong, 2021. "A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant type exciting approach," Renewable Energy, Elsevier, vol. 174(C), pages 769-785.
    5. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    6. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    7. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
    8. Chang, Yue & Jia, Yulong & Hong, Tan, 2023. "Comprehensive analysis and multi-objective optimization of an innovative power generation system using biomass gasification and LNG regasification processes," Energy, Elsevier, vol. 283(C).
    9. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    10. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    11. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    12. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    13. Xiao Chen & Wei Zhao & Xiao Lu Zhao & Jian Zhong Xu, 2014. "Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading," Energies, MDPI, vol. 7(4), pages 1-24, April.
    14. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    15. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    16. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    17. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.
    18. Breen, Benjamin & Vega, Amaya & Feo-Valero, Maria, 2015. "An empirical analysis of mode and route choice for international freight transport in Ireland," Working Papers 262587, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    19. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    20. Alam, Md. Mahbub & Rehman, Shafiqur & Meyer, Josua P. & Al-Hadhrami, Luai M., 2011. "Review of 600–2500kW sized wind turbines and optimization of hub height for maximum wind energy yield realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3839-3849.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4683-4696:d:21519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.