IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i5p780-803d12264.html
   My bibliography  Save this article

Cost Effective Options for Greenhouse Gas (GHG) Emission Reduction in the Power Sector for Developing Economies — A Case Study in Sabah, Malaysia

Author

Listed:
  • Siong Lee Koh

    (Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Klang, 53300, Kuala Lumpur, Malaysia)

  • Yun Seng Lim

    (Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Klang, 53300, Kuala Lumpur, Malaysia)

  • Stella Morris

    (Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Klang, 53300, Kuala Lumpur, Malaysia)

Abstract

With their increasing shares of global emissions developing economies are increasingly being pressured to assume a greater role in global greenhouse gas (GHG) emission reduction. Developed countries have invested tremendously in and proclaimed renewable energy (RE) and associated smart power technologies as solutions to meet their energy demands and reduce their GHG emissions at the same time. However, in the developing economies, these technologies may not deliver the desired results because they have their unique characteristics and priorities, which are different from those of the developed world. Many GHG emission reduction technologies are still very expensive and not fully developed. For the developing economies, the adoption threshold may become very high. Therefore, the cost effectiveness and practicality of each technology in reducing GHG emission in the developing economies may be very different from that of the developed economies. In this paper, available RE and other GHG emission reduction technologies are individually considered in a case study on Sabah, one of the 13 states in Malaysia, in order to assess the effects of the individual technologies on GHG emission and electricity cost reductions.

Suggested Citation

  • Siong Lee Koh & Yun Seng Lim & Stella Morris, 2011. "Cost Effective Options for Greenhouse Gas (GHG) Emission Reduction in the Power Sector for Developing Economies — A Case Study in Sabah, Malaysia," Energies, MDPI, vol. 4(5), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:5:p:780-803:d:12264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/5/780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/5/780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koh, Siong Lee & Lim, Yun Seng, 2010. "Meeting energy demand in a developing economy without damaging the environment--A case study in Sabah, Malaysia, from technical, environmental and economic perspectives," Energy Policy, Elsevier, vol. 38(8), pages 4719-4728, August.
    2. Seng, Lim Yun & Lalchand, G. & Sow Lin, Gladys Mak, 2008. "Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia," Energy Policy, Elsevier, vol. 36(6), pages 2130-2142, June.
    3. Lim, Yun Seng & Koh, Siong Lee, 2010. "Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 35(5), pages 1024-1032.
    4. Sopian, K. & Othman, M.Y.Hj. & Wirsat, A., 1995. "The wind energy potential of Malaysia," Renewable Energy, Elsevier, vol. 6(8), pages 1005-1016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sasongko, Nugroho Adi & Noguchi, Ryozo & Ahamed, Tofael, 2018. "Environmental load assessment for an integrated design of microalgae system of palm oil mill in Indonesia," Energy, Elsevier, vol. 159(C), pages 1148-1160.
    2. Yousuf, I. & Ghumman, A.R. & Hashmi, H.N. & Kamal, M.A., 2014. "Carbon emissions from power sector in Pakistan and opportunities to mitigate those," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 71-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Andriyana, A., 2011. "Current energy usage and sustainable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4370-4377.
    2. Koh, Siong Lee & Lim, Yun Seng, 2010. "Meeting energy demand in a developing economy without damaging the environment--A case study in Sabah, Malaysia, from technical, environmental and economic perspectives," Energy Policy, Elsevier, vol. 38(8), pages 4719-4728, August.
    3. Ho, Lip-Wah, 2016. "Wind energy in Malaysia: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 279-295.
    4. Petinrin, J.O. & Shaaban, Mohamed, 2015. "Renewable energy for continuous energy sustainability in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 967-981.
    5. Aliashim Albani & Mohd Zamri Ibrahim, 2017. "Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia," Energies, MDPI, vol. 10(3), pages 1-21, March.
    6. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).
    7. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    8. Gu, Minan & Liu, Yongsheng & Yang, Jingjing & Peng, Lin & Zhao, Chunjiang & Yang, Zhenglong & Yang, Jinhuan & Fang, Wengjian & Fang, Jin & Zhao, Zhenjie, 2012. "Estimation of environmental effect of PVNB installed along a metro line in China," Renewable Energy, Elsevier, vol. 45(C), pages 237-244.
    9. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    10. Alsharif, Mohammed H. & Nordin, Rosdiadee & Ismail, Mahamod, 2016. "Green wireless network optimisation strategies within smart grid environments for Long Term Evolution (LTE) cellular networks in Malaysia," Renewable Energy, Elsevier, vol. 85(C), pages 157-170.
    11. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    12. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M. & Jiang, Lide & French, Steven P. & Shi, Xuan & Smith, Brennan T. & Neary, Vincent S. & Stewart, Kevin M., 2012. "National geodatabase of tidal stream power resource in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3326-3338.
    13. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    14. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    15. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    16. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    17. Mah, Daphne Ngar-yin & van der Vleuten, Johannes Marinus & Hills, Peter & Tao, Julia, 2012. "Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications," Energy Policy, Elsevier, vol. 49(C), pages 204-216.
    18. Lim, Xin-Le & Lam, Wei-Haur & Hashim, Roslan, 2015. "Feasibility of marine renewable energy to the Feed-in Tariff system in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 708-719.
    19. Yusof, Ahmad & Raman, Maznah & Nopiah, Zulkifli, 2013. "Modeling of the Malaysian Crude Oil System," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 47(1), pages 125-130.
    20. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:5:p:780-803:d:12264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.