IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i3p517-531d11741.html
   My bibliography  Save this article

CFD Investigation into Diesel PCCI Combustion with Optimized Fuel Injection

Author

Listed:
  • Zhijun Peng

    (School of Engineering and Design, University of Sussex, UK)

  • Bin Liu

    (School of Engineering and Design, University of Sussex, UK)

  • Weiji Wang

    (School of Engineering and Design, University of Sussex, UK)

  • Lipeng Lu

    (School of Jet Propulsion, Beihang University, China)

Abstract

A multi-pulse injection strategy for premixed charge compression ignition (PCCI) combustion was investigated in a four-valve, direct-injection diesel engine by a computational fluid dynamics (CFD) simulation using KIVA-3V code coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, spray angles, and injection velocity were examined. The mixing process and formation of soot and nitrogen oxide (NO x ) emissions were investigated as the focus of the research. The results show that the fuel splitting proportion and the injection timing impacted the combustion and emissions significantly due to the considerable changes of the mixing process and fuel distribution in the cylinder. While the spray, inclusion angle and injection velocity at the injector exit, can be adjusted to improve mixing, combustion and emissions, appropriate injection timing and fuel splitting proportion must be jointly considered for optimum combustion performance.

Suggested Citation

  • Zhijun Peng & Bin Liu & Weiji Wang & Lipeng Lu, 2011. "CFD Investigation into Diesel PCCI Combustion with Optimized Fuel Injection," Energies, MDPI, vol. 4(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:3:p:517-531:d:11741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/3/517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/3/517/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel A. Gómez & Roberto Comesaña & Miguel A. Álvarez Feijoo & Pablo Eguía, 2012. "Simulation of the Effect of Water Temperature on Domestic Biomass Boiler Performance," Energies, MDPI, vol. 5(4), pages 1-18, April.
    2. Wenming, Yang & Meng, Yang, 2019. "Phi-T map analysis on RCCI engine fueled by methanol and biodiesel," Energy, Elsevier, vol. 187(C).
    3. Hanzhengnan Yu & Xingyu Liang & Gequn Shu & Xu Wang & Yuesen Wang & Hongsheng Zhang, 2016. "Experimental Investigation on Wall Film Distribution of Dimethyl Ether/Diesel Blended Fuels Formed during Spray Wall Impingement," Energies, MDPI, vol. 9(11), pages 1-17, November.
    4. Zhaojie Shen & Wenzheng Cui & Xiaodong Ju & Zhongchang Liu & Shaohua Wu & Jianguo Yang, 2018. "Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection," Energies, MDPI, vol. 11(3), pages 1-14, February.
    5. Intarat Naruemon & Long Liu & Qihao Mei & Xiuzhen Ma, 2019. "Investigation on an Injection Strategy Optimization for Diesel Engines Using a One-Dimensional Spray Model," Energies, MDPI, vol. 12(21), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:3:p:517-531:d:11741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.