IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v143y2021ics1364032121002045.html
   My bibliography  Save this article

Land use for United States power generation: A critical review of existing metrics with suggestions for going forward

Author

Listed:
  • Wachs, Elizabeth
  • Engel, Bernard

Abstract

Renewable-based energy systems have the potential to vastly increase the use of land devoted to energy, thus drastically changing landscapes and habitats, since conventional, fossil-based energy systems use a very small proportion of earth's land surface. Land use affects ecosystems, biodiversity, and geochemical cycles. It also affects people's well-being due to effects on views, noise, recreation, and quality of life. This means strong and transparent metrics to assess land use for energy systems are needed. This review considers some of the most influential papers and metrics in this category, namely ecological footprint, land use intensity and power density, attempting to make them transparent in terms of data used and calculations performed. The literature frequently relies heavily on assessments that are decades old, many dating from the 1980's. The lack of transparency in the methods and even confusion in the units has led to the published metrics being applied incorrectly. Even within the same paper, the calculation is often performed several different ways, leading to errors and confusion on several orders of magnitude. An assessment of land use by major electricity production technologies and fuels as well as an explanation and guide to commonly used metrics is provided.

Suggested Citation

  • Wachs, Elizabeth & Engel, Bernard, 2021. "Land use for United States power generation: A critical review of existing metrics with suggestions for going forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002045
    DOI: 10.1016/j.rser.2021.110911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herendeen, Robert, 2019. "Does “100% renewable” trump concern for spatial impacts?," Energy Policy, Elsevier, vol. 130(C), pages 304-310.
    2. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    3. Horner, Robert M. & Clark, Corrie E., 2013. "Characterizing variability and reducing uncertainty in estimates of solar land use energy intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 129-137.
    4. Caleb K. Miskin & Yiru Li & Allison Perna & Ryan G. Ellis & Elizabeth K. Grubbs & Peter Bermel & Rakesh Agrawal, 2019. "Sustainable co-production of food and solar power to relax land-use constraints," Nature Sustainability, Nature, vol. 2(10), pages 972-980, October.
    5. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    6. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    7. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    8. Abbasi, S. A. & Abbasi, Naseema, 2000. "The likely adverse environmental impacts of renewable energy sources," Applied Energy, Elsevier, vol. 65(1-4), pages 121-144, April.
    9. Sovacool, Benjamin K., 2009. "Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity," Energy Policy, Elsevier, vol. 37(6), pages 2241-2248, June.
    10. DiPippo, Ronald, 1991. "Geothermal energy Electricity generation and environmental impact," Energy Policy, Elsevier, vol. 19(8), pages 798-807, October.
    11. Mathis Wackernagel & Gemma Cranston & Juan Carlos Morales & Alessandro Galli, 2014. "Ecological Footprint accounts," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 24, pages 371-396, Edward Elgar Publishing.
    12. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    13. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    14. Topham, Eva & McMillan, David, 2017. "Sustainable decommissioning of an offshore wind farm," Renewable Energy, Elsevier, vol. 102(PB), pages 470-480.
    15. Fiala, Nathan, 2008. "Measuring sustainability: Why the ecological footprint is bad economics and bad environmental science," Ecological Economics, Elsevier, vol. 67(4), pages 519-525, November.
    16. Mario Welzel & Alexander Schendel & Torsten Schlurmann & Arndt Hildebrandt, 2019. "Volume-Based Assessment of Erosion Patterns around a Hydrodynamic Transparent Offshore Structure," Energies, MDPI, vol. 12(16), pages 1-25, August.
    17. Giampietro, Mario, 2019. "On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth," Ecological Economics, Elsevier, vol. 162(C), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    2. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    5. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    6. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    7. Emma Uebelhor & Olivia Hintz & Sarah B. Mills & Abigail Randall, 2021. "Utility-Scale Solar in the Great Lakes: Analyzing Community Reactions to Solar Developments," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    8. Horner, Robert M. & Clark, Corrie E., 2013. "Characterizing variability and reducing uncertainty in estimates of solar land use energy intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 129-137.
    9. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    10. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2013. "Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis," Energy Policy, Elsevier, vol. 56(C), pages 418-424.
    11. Eleonora Riva Sanseverino & Maurizio Cellura & Le Quyen Luu & Maria Anna Cusenza & Ninh Nguyen Quang & Nam Hoai Nguyen, 2021. "Life-Cycle Land-Use Requirement for PV in Vietnam," Energies, MDPI, vol. 14(4), pages 1-11, February.
    12. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    13. Semeraro, Teodoro & Pomes, Alessandro & Del Giudice, Cecilia & Negro, Danilo & Aretano, Roberta, 2018. "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," Energy Policy, Elsevier, vol. 117(C), pages 218-227.
    14. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    15. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    16. Hori, Keiko & Matsui, Takanori & Hasuike, Takashi & Fukui, Ken-ichi & Machimura, Takashi, 2016. "Development and application of the renewable energy regional optimization utility tool for environmental sustainability: REROUTES," Renewable Energy, Elsevier, vol. 93(C), pages 548-561.
    17. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    18. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    19. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    20. Walston, Leroy J. & Rollins, Katherine E. & LaGory, Kirk E. & Smith, Karen P. & Meyers, Stephanie A., 2016. "A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States," Renewable Energy, Elsevier, vol. 92(C), pages 405-414.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.