IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1502-d1614873.html
   My bibliography  Save this article

Shell-Optimized Hybrid Generator for Ocean Wave Energy Harvesting

Author

Listed:
  • Heng Liu

    (Center on Nano-Energy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China)

  • Dongxin Guo

    (Marine Design and Research Institute of China, Shanghai 200011, China)

  • Hengda Zhu

    (Marine Design and Research Institute of China, Shanghai 200011, China)

  • Honggui Wen

    (Center on Nano-Energy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China)

  • Jiawei Li

    (Center on Nano-Energy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China)

  • Lingyu Wan

    (Center on Nano-Energy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China)

Abstract

With the increasing global emphasis on sustainable energy, wave energy has gained recognition as a significant renewable marine resource, drawing substantial research attention. However, the efficient conversion of low-frequency, random, and low-energy wave motion into electrical power remains a considerable challenge. In this study, an advanced hybrid generator design is introduced which enhances wave energy harvesting by optimizing wave–body coupling characteristics and incorporating both a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) within the shell. The optimized asymmetric trapezoidal shell (ATS) improves output frequency and energy harvesting efficiency in marine environments. Experimental findings under simulated water wave excitation indicate that the accelerations in the x, y, and z directions for the ATS are 1.9 m·s −2 , 0.5 m·s −2 , and 1.4 m·s −2 , respectively, representing 1.2, 5.5, and 2.3 times those observed in the cubic shell. Under real ocean conditions, a single TENG unit embedded in the ATS achieves a maximum transferred charge of 1.54 μC, a short-circuit current of 103 μA, and an open-circuit voltage of 363 V, surpassing the cubic shell by factors of 1.21, 1.24, and 2.13, respectively. These performance metrics closely align with those obtained under six-degree-of-freedom platform oscillation (0.4 Hz, swing angle range of ±6°), exceeding the results observed in laboratory-simulated waves. Notably, the most probable output frequency of the ATS along the x-axis reaches 0.94 Hz in ocean trials, which is 1.94 times the significant wave frequency of ambient sea waves. The integrated hybrid generator efficiently captures low-quality wave energy to power water quality sensors in marine environments. This study highlights the potential of combining synergistic geometric shell design and generator integration to achieve high-performance wave energy harvesting through improved wave–body coupling.

Suggested Citation

  • Heng Liu & Dongxin Guo & Hengda Zhu & Honggui Wen & Jiawei Li & Lingyu Wan, 2025. "Shell-Optimized Hybrid Generator for Ocean Wave Energy Harvesting," Energies, MDPI, vol. 18(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1502-:d:1614873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    2. Salman, Mohamed & Sorokin, Vladislav & Aw, Kean, 2024. "Systematic literature review of wave energy harvesting using triboelectric nanogenerator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    3. Xu, Shuxing & Zhang, Jiabin & Su, Erming & Li, Chengyu & Tang, Wei & Liu, Guanlin & Cao, Leo N.Y. & Wang, Zhong Lin, 2024. "Dynamic behavior and energy flow of floating triboelectric nanogenerators," Applied Energy, Elsevier, vol. 367(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiacheng & Yu, Yang & Li, Hengyu & Zhu, Mingkang & Zhang, Sheng & Gu, Chengjie & Jiang, Lin & Wang, Zhong Lin & Zhu, Jianyang & Cheng, Tinghai, 2024. "Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting," Applied Energy, Elsevier, vol. 357(C).
    2. Liu, Ping & Zhong, Tao & Xu, Gaobo & Mao, Wenfei & Yang, Shijing & Jiang, Zezhuan & Xu, Cunyun & Song, Qunliang, 2024. "Controlling the residual charge to alleviate the frequency dependence of ternary direct current triboelectric nanogenerators," Applied Energy, Elsevier, vol. 367(C).
    3. Pang, Yafeng & Zhu, Xingyi & Jin, Yiyang & Yang, Zichao & Liu, Shuainian & Shen, Lingjie & Li, Xinhong & Lee, Chengkuo, 2023. "Textile-inspired triboelectric nanogenerator as intelligent pavement energy harvester and self-powered skid resistance sensor," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1502-:d:1614873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.