IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1404-d1610883.html
   My bibliography  Save this article

Pyrolysis Characteristics of Empty Fruit Bunches at Different Temperatures and Heating Rates

Author

Listed:
  • Hyeongtak Ko

    (Department of Environmental Engineering, Kongju National University, Cheonan 31080, Chungcheongnam-do, Republic of Korea)

  • Myeongjong Lee

    (Department of Environmental Engineering, Kongju National University, Cheonan 31080, Chungcheongnam-do, Republic of Korea)

  • Rumduol Sen

    (Department of Environmental Engineering, Kongju National University, Cheonan 31080, Chungcheongnam-do, Republic of Korea)

  • Jeongwoo Choi

    (Department of Environmental Engineering, Kongju National University, Cheonan 31080, Chungcheongnam-do, Republic of Korea)

  • Seacheon Oh

    (Department of Environmental Engineering, Kongju National University, Cheonan 31080, Chungcheongnam-do, Republic of Korea)

Abstract

EFB is a biomass waste primarily generated in Southeast Asia, and its pyrolysis enables both waste management and conversion into valuable products. In pyrolysis, the heating rate is a crucial factor; however, studies on its influence on EFB are extremely limited. This study investigates the pyrolysis characteristics of EFB by analyzing product properties based on reaction temperature and heating rate. TGA showed that the thermal decomposition of EFB begins at approximately 210 °C and is largely complete by 400 °C. Furthermore, kinetic analysis using TGA data, applying both differential and integral methods, revealed distinct trends. Through pyrolysis experiments using a fixed-bed reactor, the yield analysis of products under varying reaction temperatures and heating rates demonstrated that higher temperatures promote pyrolysis, leading to a decrease in biochar yield and an increase in gas product yield. For liquid products, a higher heating rate suppressed secondary reactions and led to an increase in the yield of the aqueous phase. Gas product characterization revealed that CO and CO 2 formation began simultaneously at approximately 270 °C. GC-MS analysis of the liquid products recovered under different pyrolysis conditions showed that most compounds contained oxygen, originating from hemicellulose, cellulose, and lignin. Additionally, FT-IR analysis of the biochar confirmed that oxygen-containing functional groups decomposed as pyrolysis progressed, and the presence of turbostratic carbon and crystallinity influenced by trace inorganic elements was identified.

Suggested Citation

  • Hyeongtak Ko & Myeongjong Lee & Rumduol Sen & Jeongwoo Choi & Seacheon Oh, 2025. "Pyrolysis Characteristics of Empty Fruit Bunches at Different Temperatures and Heating Rates," Energies, MDPI, vol. 18(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1404-:d:1610883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Biswas, Bijoy & Singh, Rawel & Kumar, Jitendra & Singh, Raghuvir & Gupta, Piyush & Krishna, Bhavya B. & Bhaskar, Thallada, 2018. "Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil," Renewable Energy, Elsevier, vol. 129(PB), pages 686-694.
    2. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    3. Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
    4. Zhang, Zhezi & Zhu, Mingming & Zhang, Dongke, 2018. "A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass," Applied Energy, Elsevier, vol. 220(C), pages 87-93.
    5. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    6. Rozzeta Dolah & Rohit Karnik & Halimaton Hamdan, 2021. "A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    3. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    4. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    5. Fang Yan & Kaili Xu & Deshun Li & Zhikai Cui, 2017. "A novel hazard assessment method for biomass gasification stations based on extended set pair analysis," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-21, September.
    6. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    7. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    8. Jin, Yanghao & Liu, Sirui & Shi, Ziyi & Wang, Shule & Wen, Yuming & Zaini, Ilman Nuran & Tang, Chuchu & Hedenqvist, Mikael S. & Lu, Xincheng & Kawi, Sibudjing & Wang, Chi-Hwa & Jiang, Jianchun & Jönss, 2024. "A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass," Energy, Elsevier, vol. 295(C).
    9. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    10. Kim, D. & Hadigheh, S.A., 2024. "Oxidative pyrolysis of biosolid: Air concentration effects on biochar formation and kinetics," Renewable Energy, Elsevier, vol. 224(C).
    11. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    12. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    13. Jiang, Haifeng & Liu, Haipeng & Dong, Jiaxin & Song, Jiaxing & Deng, Sunhua & Chen, Jie & Zhang, Yu & Hong, Wenpeng, 2022. "Enhancing ketones and syngas production by CO2-assisted catalytic pyrolysis of cellulose with the Ce–Co–Na ternary catalyst," Energy, Elsevier, vol. 250(C).
    14. Fugang Zhu & Laihong Shen & Pengcheng Xu & Haoran Yuan & Ming Hu & Jingwei Qi & Yong Chen, 2022. "Numerical Simulation of an Improved Updraft Biomass Gasifier Based on Aspen Plus," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    15. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    16. Feng, Li & Li, Xuhao & Lin, Yinhe & Liang, Yicong & Chen, Yuning & Zhou, Wen, 2020. "Catalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ru based catalyst: Effects of process parameters on conversion and products selectivity," Renewable Energy, Elsevier, vol. 160(C), pages 261-268.
    17. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    18. Fan, Yongsheng & Zhu, Mengfeng & Jin, Lizhu & Cui, Entian & Zhu, Lei & Cai, Yixi & Zhao, Weidong, 2020. "Catalytic upgrading of biomass-derived vapors to bio-fuels via modified HZSM-5 coupled with DBD: Effects of different titanium sources," Renewable Energy, Elsevier, vol. 157(C), pages 100-115.
    19. Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
    20. Karimi, Samira & Tavakkoli Yaraki, Mohammad & Karri, Rama Rao, 2019. "A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 535-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1404-:d:1610883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.