IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1340-d1608496.html
   My bibliography  Save this article

Harmonic Current Suppression of Dual Three-Phase Permanent Magnet Synchronous Motor with Improved Proportional-Integral Resonant Controller

Author

Listed:
  • Lei Chen

    (Department of Applied Electronics, Zhejiang University, Hangzhou 310027, China)

  • Min Chen

    (Department of Applied Electronics, Zhejiang University, Hangzhou 310027, China)

  • Bodong Li

    (Department of Applied Electronics, Zhejiang University, Hangzhou 310027, China)

  • Xinnan Sun

    (Department of Applied Electronics, Zhejiang University, Hangzhou 310027, China)

  • Feng Jiang

    (Department of Applied Electronics, Zhejiang University, Hangzhou 310027, China)

Abstract

The impedance of the harmonic plane in a dual three-phase permanent magnet synchronous motor (DTP-PMSM) is very low, meaning that even small harmonic voltages can induce significant harmonic currents, particularly at the fifth and seventh harmonic frequencies. These harmonic currents can severely degrade system performance and increase losses. To address this issue, the mechanism of harmonic current generation due to non-sinusoidal back electromotive force (EMF) and inverter nonlinearity is first analyzed. Then, to overcome the challenge of excessive controllers in traditional harmonic suppression strategies, a rotational coordinate transformation of the harmonic plane current is employed, which unifies the controllers and reduces their number. Since traditional proportional-integral resonant (PIR) controllers are ineffective at a high-speed region, an improved PIR controller for the harmonic plane is proposed. This controller incorporates digital delay compensation, phase compensation, and discretization correction to minimize the deviation between the discretized resonant frequency and the actual frequency. These enhancements enable harmonic suppression across the entire speed range and under varying load conditions, significantly reducing harmonic currents. Finally, the proposed harmonic current suppression strategy is experimentally validated.

Suggested Citation

  • Lei Chen & Min Chen & Bodong Li & Xinnan Sun & Feng Jiang, 2025. "Harmonic Current Suppression of Dual Three-Phase Permanent Magnet Synchronous Motor with Improved Proportional-Integral Resonant Controller," Energies, MDPI, vol. 18(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1340-:d:1608496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Amine Frikha & Julien Croonen & Kritika Deepak & Yassine Benômar & Mohamed El Baghdadi & Omar Hegazy, 2023. "Multiphase Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends," Energies, MDPI, vol. 16(2), pages 1-45, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changpan Zhou & Rundong Zhong & Guodong Sun & Dongdong Zhao & Xiaopeng Zhao & Guoxiu Jing, 2024. "Fault-Tolerant Direct Torque Control of Five-Phase Permanent Magnet Synchronous Motor under Single Open-Phase Fault Based on Virtual Vectors," Energies, MDPI, vol. 17(11), pages 1-16, May.
    2. Vasileios I. Vlachou & Georgios K. Sakkas & Fotios P. Xintaropoulos & Maria Sofia C. Pechlivanidou & Themistoklis D. Kefalas & Marina A. Tsili & Antonios G. Kladas, 2024. "Overview on Permanent Magnet Motor Trends and Developments," Energies, MDPI, vol. 17(2), pages 1-48, January.
    3. Raúl Gregor & Sergio Toledo & Edgar Maqueda & Julio Pacher, 2023. "Part I—Advancements in Power Converter Technologies: A Focus on SiC-MOSFET-Based Voltage Source Converters," Energies, MDPI, vol. 16(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1340-:d:1608496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.