IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2660-d1405603.html
   My bibliography  Save this article

Fault-Tolerant Direct Torque Control of Five-Phase Permanent Magnet Synchronous Motor under Single Open-Phase Fault Based on Virtual Vectors

Author

Listed:
  • Changpan Zhou

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Rundong Zhong

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Guodong Sun

    (Institute of Intelligence Science and Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China)

  • Dongdong Zhao

    (School of automation, Northwestern Polytechnical University, Xi’an 710129, China)

  • Xiaopeng Zhao

    (AVIC Xi’an Flight Automatic Control Research Institute, Xi’an 710065, China)

  • Guoxiu Jing

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

In the existing literature, direct torque control (DTC) by synthesizing virtual vectors can effectively suppress low-order harmonic currents under the single open-phase fault (OPF) of the five-phase permanent magnet synchronous motor (PMSM), but the sectors and the look-up tables need to be redesigned, which makes the control process more complicated. In order to solve this problem, an indirect correction method of virtual vectors is proposed, and the amplitudes of the virtual vectors are maximized. The fault-tolerant DTC strategy under the OPF ensures that there is no need to re-divide the sectors under the fault. And the selection rules of the look-up tables are consistent with the healthy operation. The difference is that the amplitudes of ten virtual vectors in the faulty operation are reduced, which simplifies the control process and is easy to implement. Finally, the correctness and effectiveness of the proposed control strategy were verified by experiments.

Suggested Citation

  • Changpan Zhou & Rundong Zhong & Guodong Sun & Dongdong Zhao & Xiaopeng Zhao & Guoxiu Jing, 2024. "Fault-Tolerant Direct Torque Control of Five-Phase Permanent Magnet Synchronous Motor under Single Open-Phase Fault Based on Virtual Vectors," Energies, MDPI, vol. 17(11), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2660-:d:1405603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Amine Frikha & Julien Croonen & Kritika Deepak & Yassine Benômar & Mohamed El Baghdadi & Omar Hegazy, 2023. "Multiphase Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends," Energies, MDPI, vol. 16(2), pages 1-45, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasileios I. Vlachou & Georgios K. Sakkas & Fotios P. Xintaropoulos & Maria Sofia C. Pechlivanidou & Themistoklis D. Kefalas & Marina A. Tsili & Antonios G. Kladas, 2024. "Overview on Permanent Magnet Motor Trends and Developments," Energies, MDPI, vol. 17(2), pages 1-48, January.
    2. Raúl Gregor & Sergio Toledo & Edgar Maqueda & Julio Pacher, 2023. "Part I—Advancements in Power Converter Technologies: A Focus on SiC-MOSFET-Based Voltage Source Converters," Energies, MDPI, vol. 16(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2660-:d:1405603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.