IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1331-d1608046.html
   My bibliography  Save this article

Flight Capability Analysis Among Different Latitudes for Solar Unmanned Aerial Vehicles

Author

Listed:
  • Mateusz Kucharski

    (Department of Technical Systems Operation and Maintenance, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 48, 50-372 Wroclaw, Poland)

  • Maciej Milewski

    (Department of Technical Systems Operation and Maintenance, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 48, 50-372 Wroclaw, Poland)

  • Bartłomiej Dziewoński

    (Department of Technical Systems Operation and Maintenance, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 48, 50-372 Wroclaw, Poland)

  • Krzysztof Kaliszuk

    (Department of Technical Systems Operation and Maintenance, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 48, 50-372 Wroclaw, Poland)

  • Tomasz Kisiel

    (Department of Technical Systems Operation and Maintenance, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 48, 50-372 Wroclaw, Poland)

  • Artur Kierzkowski

    (Department of Technical Systems Operation and Maintenance, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 48, 50-372 Wroclaw, Poland)

Abstract

This paper presents an analysis of the flight endurance of solar-powered unmanned aerial vehicles (UAVs). Flight endurance is usually only analyzed under the operating conditions for the location where the UAV was constructed. The fact that these conditions change in a different environment of its operation has been missed. This can be disastrous for those looking to operate such a system under different geographical conditions. This work provides critical insights into the design and operation of solar-powered UAVs for various latitudes, highlighting strategies to maximize their performance and energy efficiency. This work analyzes the endurance of small UAVs designed for practical applications such as shoreline monitoring, agricultural pest detection, and search and rescue operations. The study uses TRNSYS 18 software to employ solar radiation in the power system performance at different latitudes. The results show that flight endurance is highly dependent on solar irradiance. This study confirms that the differences between low latitudes in summer and high latitudes in winter are significant, and this parameter cannot be ignored in terms of planning the use of such vehicles. The findings emphasize the importance of optimizing the balance between UAV mass, solar energy harvesting, and endurance. While the addition of battery mass can enhance endurance, the structural reinforcements required for increased weight may impose practical limitations. The scientific contribution of this work may be useful for both future designers and stakeholders in the operation of such unmanned systems.

Suggested Citation

  • Mateusz Kucharski & Maciej Milewski & Bartłomiej Dziewoński & Krzysztof Kaliszuk & Tomasz Kisiel & Artur Kierzkowski, 2025. "Flight Capability Analysis Among Different Latitudes for Solar Unmanned Aerial Vehicles," Energies, MDPI, vol. 18(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1331-:d:1608046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beckman, William A. & Broman, Lars & Fiksel, Alex & Klein, Sanford A. & Lindberg, Eva & Schuler, Mattias & Thornton, Jeff, 1994. "TRNSYS The most complete solar energy system modeling and simulation software," Renewable Energy, Elsevier, vol. 5(1), pages 486-488.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    2. Ana Picallo-Perez & Jose Maria Sala-Lizarraga, 2021. "Design and Operation of a Polygeneration System in Spanish Climate Buildings under an Exergetic Perspective," Energies, MDPI, vol. 14(22), pages 1-21, November.
    3. Barber, Kyle A. & Krarti, Moncef, 2022. "A review of optimization based tools for design and control of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Campaniço, Hugo & Hollmuller, Pierre & Soares, Pedro M.M., 2014. "Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation," Applied Energy, Elsevier, vol. 134(C), pages 426-438.
    5. Kandpal, Tara C. & Broman, Lars, 2014. "Renewable energy education: A global status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 300-324.
    6. Dutton, Spencer & Marnay, Chris & Feng, Wei & Robinson, Matthew & Mammoli, Andrea, 2019. "Moore vs. Murphy: Tradeoffs between complexity and reliability in distributed energy system scheduling using software-as-a-service," Applied Energy, Elsevier, vol. 238(C), pages 1126-1137.
    7. Olivieri, L. & Caamaño-Martín, E. & Moralejo-Vázquez, F.J. & Martín-Chivelet, N. & Olivieri, F. & Neila-Gonzalez, F.J., 2014. "Energy saving potential of semi-transparent photovoltaic elements for building integration," Energy, Elsevier, vol. 76(C), pages 572-583.
    8. Broman, Lars, 1994. "On the didactics of renewable energy education — drawing on twenty years experience," Renewable Energy, Elsevier, vol. 5(5), pages 1398-1405.
    9. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.
    10. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    11. Raghuram Kalyanam & Sabine Hoffmann, 2020. "A Novel Approach to Enhance the Generalization Capability of the Hourly Solar Diffuse Horizontal Irradiance Models on Diverse Climates," Energies, MDPI, vol. 13(18), pages 1-16, September.
    12. Cheng Zhen & Jide Niu & Zhe Tian, 2023. "Research on Model Calibration Method of Chiller Plants Based on Error Reverse Correction with Limited Data," Energies, MDPI, vol. 16(2), pages 1-17, January.
    13. Rachit Srivastava & A. N. Tiwari & V. K. Giri, 2021. "Performance evaluation of parking integrated grid-connected photovoltaic system located in Northern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5756-5775, April.
    14. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    15. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 36-51.
    16. Rudai Shan & Lars Junghans, 2023. "Multi-Objective Optimization for High-Performance Building Facade Design: A Systematic Literature Review," Sustainability, MDPI, vol. 15(21), pages 1-33, November.
    17. Yao, Jian, 2014. "Determining the energy performance of manually controlled solar shades: A stochastic model based co-simulation analysis," Applied Energy, Elsevier, vol. 127(C), pages 64-80.
    18. Shi, Xing & Tian, Zhichao & Chen, Wenqiang & Si, Binghui & Jin, Xing, 2016. "A review on building energy efficient design optimization rom the perspective of architects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 872-884.
    19. Zhu, Jie & Niu, Jide & Tian, Zhe & Zhou, Ruoyu & Ye, Chuang, 2022. "Rapid quantification of demand response potential of building HAVC system via data-driven model," Applied Energy, Elsevier, vol. 325(C).
    20. Yang, Haotian & Liu, Xingjiang & Wang, Chaojie & Shen, Chao & Han, Rongtao & Kalogirou, Soteris A. & Wang, Julian, 2024. "Investigation on the heating performance of a BIPV/T façade coupled with direct-expansion heat pump system in severe cold region," Renewable Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1331-:d:1608046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.