IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1275-d1606033.html
   My bibliography  Save this article

A Two-Stage Generative Architecture for Renewable Scenario Generation Based on Temporal Scenario Representation and Diffusion Models

Author

Listed:
  • Chenglong Xu

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Peidong Xu

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Yuxin Dai

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Shi Su

    (Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Luxi Zhang

    (Physics Department, Brandeis University, Waltham, MA 02453, USA)

  • Jun Zhang

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Yuyang Bai

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Tianlu Gao

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Qingyang Xie

    (Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Lei Shang

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Wenzhong Gao

    (Department of Electrical and Computer Engineering, University of Denver, Denver, CO 80208, USA)

Abstract

Scenario generation proves to be an effective approach for addressing uncertainties in stochastic programming for power systems with integrated renewable resources. In recent years, numerous studies have explored the application of deep generative models to scenario generation. Considering the challenge of characterizing renewable resource uncertainty, in this paper, we propose a novel two-stage generative architecture for renewable scenario generation using diffusion models. Specifically, in the first stage the temporal features of the renewable energy output are learned and encoded into the hidden space by means of a representational model with an encoder–decoder structure, which provides the inductive bias of the scenario for generation. In the second stage, the real distribution of vectors in the hidden space is learned based on the conditional diffusion model, and the generated scenario is obtained through decoder mapping. The case study demonstrates the effectiveness of this architecture in generating high-quality renewable scenarios. In comparison to advanced deep generative models, the proposed method exhibits superior performance in a comprehensive evaluation.

Suggested Citation

  • Chenglong Xu & Peidong Xu & Yuxin Dai & Shi Su & Luxi Zhang & Jun Zhang & Yuyang Bai & Tianlu Gao & Qingyang Xie & Lei Shang & Wenzhong Gao, 2025. "A Two-Stage Generative Architecture for Renewable Scenario Generation Based on Temporal Scenario Representation and Diffusion Models," Energies, MDPI, vol. 18(5), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1275-:d:1606033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    2. Min Xu & Wanwei Li & Zhihui Feng & Wangwang Bai & Lingling Jia & Zhanhong Wei, 2023. "Economic Dispatch Model of High Proportional New Energy Grid-Connected Consumption Considering Source Load Uncertainty," Energies, MDPI, vol. 16(4), pages 1-20, February.
    3. Camal, S. & Teng, F. & Michiorri, A. & Kariniotakis, G. & Badesa, L., 2019. "Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications," Applied Energy, Elsevier, vol. 242(C), pages 1396-1406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markos A. Kousounadis-Knousen & Ioannis K. Bazionis & Athina P. Georgilaki & Francky Catthoor & Pavlos S. Georgilakis, 2023. "A Review of Solar Power Scenario Generation Methods with Focus on Weather Classifications, Temporal Horizons, and Deep Generative Models," Energies, MDPI, vol. 16(15), pages 1-29, July.
    2. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    3. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    5. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    6. Zhou Su & Guoqing Yang & Lixiao Yao & Qingqing Zhou & Yuhan Zhang, 2024. "Optimization of Provincial Power Source Structure Planning in Northwestern China Based on Time-Series Production Simulation," Energies, MDPI, vol. 17(19), pages 1-14, September.
    7. Tanner, Sophia & Burnett, Wesley & Maguire, Karen & Winikoff, Justin, 2024. "Blown Away: The Influence of Wind Farms on Agricultural Land Values," 2024 Annual Meeting, July 28-30, New Orleans, LA 343970, Agricultural and Applied Economics Association.
    8. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    9. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    10. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    11. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    12. Vinel, Alexander & Mortaz, Ebrahim, 2019. "Optimal pooling of renewable energy sources with a risk-averse approach: Implications for US energy portfolio," Energy Policy, Elsevier, vol. 132(C), pages 928-939.
    13. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
    14. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    15. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    16. Boffino, Luigi & Conejo, Antonio J. & Sioshansi, Ramteen & Oggioni, Giorgia, 2019. "A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems," Energy Economics, Elsevier, vol. 84(C).
    17. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    19. Christina Ortega & Amin Younes & Mark Severy & Charles Chamberlin & Arne Jacobson, 2020. "Resource and Load Compatibility Assessment of Wind Energy Offshore of Humboldt County, California," Energies, MDPI, vol. 13(21), pages 1-27, October.
    20. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1275-:d:1606033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.