IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1178-d1601864.html
   My bibliography  Save this article

The Limits of the Current Consensus Regarding the Carbon Footprint of Photovoltaic Modules Manufactured in China: A Review and Case Study

Author

Listed:
  • Enrico Mariutti

    (Independent Researcher, 00141 Rome, Italy)

Abstract

A transition to low-carbon energy sources is pivotal in addressing the escalating challenges of climate change and environmental degradation. Solar energy, particularly photovoltaic (PV) technology, stands out as a prominent solution because of its potential for clean and sustainable electricity generation with minimal greenhouse gas emissions. However, accurately assessing the carbon footprint of PV modules is essential for guiding policy, industry practices, and research. This paper reviews the state of the current literature and highlights the difficulties in estimating the carbon footprint of PV modules manufactured in China. It emphasises the inherent limitations of Process-Based Life Cycle Assessments (PLCAs), including data collection challenges, dynamic environmental changes, and subjective methodological choices. Through the case study of Ecoinvent 3.7 the study underscores the need for improved transparency, standardisation, and reproducibility in Life Cycle Assessments (LCAs) to provide more accurate and reliable environmental impact evaluations.

Suggested Citation

  • Enrico Mariutti, 2025. "The Limits of the Current Consensus Regarding the Carbon Footprint of Photovoltaic Modules Manufactured in China: A Review and Case Study," Energies, MDPI, vol. 18(5), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1178-:d:1601864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Xiaoxin Chen & Bojian Chen & Yongdong Wang & Na Zhou & Zhibin Zhou, 2024. "Response of Vegetation and Soil Property Changes by Photovoltaic Established Stations Based on a Comprehensive Meta-Analysis," Land, MDPI, vol. 13(4), pages 1-19, April.
    3. Lindsay Price & Alissa Kendall, 2012. "Wind Power as a Case Study," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 22-27, April.
    4. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    5. Mehrshad Kolahchian Tabrizi & Jacopo Famiglietti & Davide Bonalumi & Stefano Campanari, 2023. "The Carbon Footprint of Hydrogen Produced with State-of-the-Art Photovoltaic Electricity Using Life-Cycle Assessment Methodology," Energies, MDPI, vol. 16(13), pages 1-25, July.
    6. Bernhard Steubing & Arjan de Koning & Stefano Merciai & Arnold Tukker, 2022. "How do carbon footprints from LCA and EEIOA databases compare? A comparison of ecoinvent and EXIOBASE," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1406-1422, August.
    7. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    2. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    3. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    4. Mehrshad Kolahchian Tabrizi & Jacopo Famiglietti & Davide Bonalumi & Stefano Campanari, 2023. "The Carbon Footprint of Hydrogen Produced with State-of-the-Art Photovoltaic Electricity Using Life-Cycle Assessment Methodology," Energies, MDPI, vol. 16(13), pages 1-25, July.
    5. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    6. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    7. Qi, Xiaoyan & Yao, Xilong & Guo, Pibin & Han, Yunfei & Liu, Lin, 2024. "Applying life cycle assessment to investigate the environmental impacts of a PV–CSP hybrid system," Renewable Energy, Elsevier, vol. 227(C).
    8. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    9. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    10. Ekaterina Syrtsova & Anton Pyzhev & Evgeniya Zander, 2022. "Social, Economic, and Environmental Effects of Electricity and Heat Generation in Yenisei Siberia: Is there an Alternative to Coal?," Energies, MDPI, vol. 16(1), pages 1-19, December.
    11. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    12. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    13. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    14. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    15. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    16. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    17. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    18. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    19. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    20. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1178-:d:1601864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.