IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1153-d1600433.html
   My bibliography  Save this article

Research on Safety Domain Modeling of Low-Voltage Distribution Substations Based on High-Dimensional Safety Region Analysis

Author

Listed:
  • Tianyi Guan

    (Stare Grid Shenyang Electric Power Supply Company, Shenyang 110811, China)

  • Zhuang Ma

    (Stare Grid Shenyang Electric Power Supply Company, Shenyang 110811, China)

  • Hao Ren

    (Stare Grid Shenyang Electric Power Supply Company, Shenyang 110811, China)

  • Qingshuai Yu

    (Northeastern University, College Of Information Science and Engineering, Shenyang 110819, China)

  • Rongxing Zhang

    (Northeastern University, College Of Information Science and Engineering, Shenyang 110819, China)

  • Zhenao Sun

    (Northeastern University, College Of Information Science and Engineering, Shenyang 110819, China)

Abstract

A low-voltage distribution substation is the last link before electricity transmission from the high-voltage grid to end-users. It is responsible for converting high-voltage electricity into low-voltage electricity suitable for domestic and commercial use and plays a central and critical role in the power system. The traditional modeling method is difficult to directly observe and solve the complete safety boundary expression in the high-dimensional state space, so the solution efficiency is greatly reduced. To address the above problems, this paper proposes a low-voltage distribution substation station safety domain (LVDS-SR) modeling method based on the high-dimensional safety domain definition method. In this paper, the concepts of safety work point, safety boundary, and safety domain are first defined. Then, the general mathematical model, edge points, and safety boundaries of the substation system are solved accurately by the high-dimensional safety domain definition and solution method, to obtain the safety domain model. The validity of the model and method is verified by arithmetic examples. Comparison with existing studies shows that the complete analytical formulation of the high-dimensional security domain is obtained for the first time in this paper, and the linearization method is used to improve the solution efficiency at the same time. This study provides a new analytical tool for the reliable and stable operation of low-voltage distribution substations, which has important theoretical and practical application value for the security assessment and optimization of power systems.

Suggested Citation

  • Tianyi Guan & Zhuang Ma & Hao Ren & Qingshuai Yu & Rongxing Zhang & Zhenao Sun, 2025. "Research on Safety Domain Modeling of Low-Voltage Distribution Substations Based on High-Dimensional Safety Region Analysis," Energies, MDPI, vol. 18(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1153-:d:1600433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    2. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    2. Dong, Hongxin & Han, Zhongyang & Zhao, Jun & Wang, Wei, 2024. "A dynamic security region construction method and its existence proof for gaseous system," Applied Energy, Elsevier, vol. 367(C).
    3. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
    4. Shirazi, Masoud, 2022. "Assessing energy trilemma-related policies: The world's large energy user evidence," Energy Policy, Elsevier, vol. 167(C).
    5. Gao, Han & Zhao, Peiyao & Li, Zhengshuo, 2024. "Dynamic security region of natural gas systems in integrated electricity-gas systems," Energy, Elsevier, vol. 289(C).
    6. Lin, Yujun & Yang, Qiufan & Zhou, Jianyu & Chen, Xia & Wen, Jinyu, 2023. "A time-coupling consideration for evaluation of load carrying capacity in district multi-energy systems," Applied Energy, Elsevier, vol. 351(C).
    7. Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2022. "Probabilistic energy flow calculation for regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 308(C).
    8. Liu, Hong & Cao, Yuchen & Ge, Shaoyun & Xu, Zhengyang & Gu, Chenghong & He, Xingtang, 2022. "Load carrying capability of regional electricity-heat energy systems: Definitions, characteristics, and optimal value evaluation," Applied Energy, Elsevier, vol. 310(C).
    9. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    10. Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
    11. Zhao, Peiyao & Li, Zhengshuo & Bai, Xiang & Su, Jia & Chang, Xinyue, 2024. "Stochastic real-time dispatch considering AGC and electric-gas dynamic interaction: Fine-grained modeling and noniterative decentralized solutions," Applied Energy, Elsevier, vol. 375(C).
    12. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    13. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    14. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    15. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Xiao, Jun & Lin, Xiqiao & Jiao, Heng & Song, Chenhui & Zhou, Huan & Zu, Guoqiang & Zhou, Chunli & Wang, Dan, 2023. "Model, calculation, and application of available supply capability for distribution systems," Applied Energy, Elsevier, vol. 348(C).
    17. Jun Zhang & Jiangquan Wang & Linling Zhang & Lei Zhao, 2022. "Impact of industrialization on China’s regional energy security in the New Era," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8418-8440, June.
    18. Liu, Chao & Fan, Yiwen & Yu, Wanshui & Liu, Yishi & Li, Chenjia & Chi, Yongning, 2024. "Low carbon operation and evaluation methods for integrated energy system counting EVs with whole life cycle considering demand response," Renewable Energy, Elsevier, vol. 236(C).
    19. Jiang, Xun & Zhou, Yue & Ming, Wenlong & Wu, Jianzhong, 2023. "Feasible operation region of an electricity distribution network," Applied Energy, Elsevier, vol. 331(C).
    20. Lang Zhao & Yuan Zeng & Zhidong Wang & Yizheng Li & Dong Peng & Yao Wang & Xueying Wang, 2023. "Robust Optimal Scheduling of Integrated Energy Systems Considering the Uncertainty of Power Supply and Load in the Power Market," Energies, MDPI, vol. 16(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1153-:d:1600433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.