IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p896-d1590394.html
   My bibliography  Save this article

Two-Stage Dual-Level Dispatch Optimization Model for Multiple Virtual Power Plants with Electric Vehicles and Demand Response Based on a Stackelberg Game

Author

Listed:
  • Jincheng Tang

    (School of Electric and Information Engineering, Yunnan Minzu University, Kunming 650500, China
    Institute of Unmanned Autonomous Systems, Yunnan Minzu University, Kunming 650500, China)

  • Xiaolan Li

    (School of Electric and Information Engineering, Yunnan Minzu University, Kunming 650500, China
    Institute of Unmanned Autonomous Systems, Yunnan Minzu University, Kunming 650500, China)

Abstract

With the continuous increase in the number of electric vehicles (EVs) and the rapid development of demand response (DR) technology, the power grid faces unprecedented challenges. A two-stage dual-level dispatch optimization model of multiple virtual power plants based on a Stackelberg game is proposed in this paper. In the day-ahead stage, a two-layer optimization scheduling model is established, where the EV layer optimizes its actions for maximum comprehensive user satisfaction, while the VPP layer optimizes its actions for minimal operating costs and interaction power, determining the scheduling arrangements for each distributed energy resource. In the intraday stage, a Stackelberg game model is constructed with the distribution network operator (DNO) as the leader, aiming to maximize profits, and the VPP as the follower, aiming to minimize its own operational costs, with both parties engaging in a game based on electricity prices and energy consumption strategies. In the simulation case study, the effectiveness of the constructed model was verified. The results show that the model can effectively reduce user costs, thereby increasing the comprehensive satisfaction of EV users by 20.7% and reducing VPP operating costs by 13.37%.

Suggested Citation

  • Jincheng Tang & Xiaolan Li, 2025. "Two-Stage Dual-Level Dispatch Optimization Model for Multiple Virtual Power Plants with Electric Vehicles and Demand Response Based on a Stackelberg Game," Energies, MDPI, vol. 18(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:896-:d:1590394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erol, Özge & Başaran Filik, Ümmühan, 2022. "A Stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities," Applied Energy, Elsevier, vol. 316(C).
    2. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    3. Liu, Junbei & Zhuge, Chengxiang & Tang, Justin Hayse Chiwing G. & Meng, Meng & Zhang, Jie, 2022. "A spatial agent-based joint model of electric vehicle and vehicle-to-grid adoption: A case of Beijing," Applied Energy, Elsevier, vol. 310(C).
    4. Rezaei, Navid & Khazali, Amirhossein & Mazidi, Mohammadreza & Ahmadi, Abdollah, 2020. "Economic energy and reserve management of renewable-based microgrids in the presence of electric vehicle aggregators: A robust optimization approach," Energy, Elsevier, vol. 201(C).
    5. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    6. Yin, WanJun & Ming, ZhengFeng & Wen, Tao, 2021. "Scheduling strategy of electric vehicle charging considering different requirements of grid and users," Energy, Elsevier, vol. 232(C).
    7. Anubhav Kumar Pandey & Vinay Kumar Jadoun & Jayalakshmi N. Sabhahit, 2022. "Real-Time Peak Valley Pricing Based Multi-Objective Optimal Scheduling of a Virtual Power Plant Considering Renewable Resources," Energies, MDPI, vol. 15(16), pages 1-30, August.
    8. Tu, Ran & Gai, Yijun (Jessie) & Farooq, Bilal & Posen, Daniel & Hatzopoulou, Marianne, 2020. "Electric vehicle charging optimization to minimize marginal greenhouse gas emissions from power generation," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    2. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    3. Chenran Jia & Can Ding & Wenhui Chen, 2023. "Research on the Diffusion Model of Electric Vehicle Quantity Considering Individual Choice," Energies, MDPI, vol. 16(14), pages 1-15, July.
    4. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    5. Yanyue Wang & Guohua Fang & Zhenni Wang, 2022. "The Benefit Realization Mechanism of Pumped Storage Power Plants Based on Multi-Dimensional Regulation and Leader-Follower Decision-Making," Energies, MDPI, vol. 15(16), pages 1-15, August.
    6. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    7. Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    8. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    9. Luke, Justin & Ribeiro, Mateus Gheorghe de Castro & Martin, Sonia & Balogun, Emmanuel & Cezar, Gustavo Vianna & Pavone, Marco & Rajagopal, Ram, 2025. "Optimal coordination of electric buses and battery storage for achieving a 24/7 carbon-free electrified fleet," Applied Energy, Elsevier, vol. 377(PC).
    10. Adil, Muhammad & Mahmud, M.A. Parvez & Kouzani, Abbas Z. & Khoo, Sui Yang, 2024. "Three-stage energy trading framework for retailers, charging stations, and electric vehicles: A game-theoretic approach," Energy, Elsevier, vol. 301(C).
    11. Habib, Salman & Aghakhani, Sina & Ghasempour Nejati, Mobin & Azimian, Mahdi & Jia, Youwei & Ahmed, Emad M., 2023. "Energy management of an intelligent parking lot equipped with hydrogen storage systems and renewable energy sources using the stochastic p-robust optimization approach," Energy, Elsevier, vol. 278(C).
    12. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    13. Jun Dong & Yuanyuan Wang & Xihao Dou & Zhengpeng Chen & Yaoyu Zhang & Yao Liu, 2021. "Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    14. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    15. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    16. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    17. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    18. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    19. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    20. Zhang, Zhe & Yu, Qing & Gao, Kun & He, Hong-Di & Liu, Yang & Huang, Haichao, 2025. "Carbon emission reduction benefits of ride-hailing vehicle electrification considering energy structure," Applied Energy, Elsevier, vol. 377(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:896-:d:1590394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.