IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000833.html
   My bibliography  Save this article

A novel ultra-short-term wind speed prediction method based on dynamic adaptive continued fraction

Author

Listed:
  • Jin, Ji
  • Tian, Jinyu
  • Yu, Min
  • Wu, Yong
  • Tang, Yuanyan

Abstract

Accurate and fast wind speed prediction can enhance the control performance of wind turbines and promote the dispatch of wind power integration. However, the intermittent and fluctuating characteristics of wind speed impose challenges on prediction models. To establish a high-accuracy and fast wind speed prediction model, a novel dynamic adaptive continued fraction (DACF) method is proposed. A more universally structured continued fraction model is utilized to capture the variation pattern of wind speed series. To improve both accuracy and computational efficiency, the stepwise parameter estimation method is introduced to achieve the dynamic and adaptive estimation to the structure parameters of continued fraction model. Moreover, considering the fluctuation feature of wind series, the predicted results of continued fraction model are corrected by the fluctuation residual correction function. And the convergence of the proposed model is theoretically proved. The proposed model is verified from four case studies based on two wind datasets with different time scales of two wind farms and achieves considerable accuracy improvement with 5.37%-28.34% reduction of root mean square error compared with contrasted models. The experimental outcomes confirm that the proposed model outperforms six contrasted models in terms of prediction precision and modeling time.

Suggested Citation

  • Jin, Ji & Tian, Jinyu & Yu, Min & Wu, Yong & Tang, Yuanyan, 2024. "A novel ultra-short-term wind speed prediction method based on dynamic adaptive continued fraction," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000833
    DOI: 10.1016/j.chaos.2024.114532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Han & Han, Shuang & Liu, Yongqian & Yan, Jie & Li, Li, 2019. "Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system," Applied Energy, Elsevier, vol. 237(C), pages 1-10.
    2. Ye, Lin & Dai, Binhua & Li, Zhuo & Pei, Ming & Zhao, Yongning & Lu, Peng, 2022. "An ensemble method for short-term wind power prediction considering error correction strategy," Applied Energy, Elsevier, vol. 322(C).
    3. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    4. Shi, Jinhao & Wang, Bo & Luo, Kaiyi & Wu, Yifei & Zhou, Min & Watada, Junzo, 2023. "Ultra-short-term wind power interval prediction based on multi-task learning and generative critic networks," Energy, Elsevier, vol. 272(C).
    5. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    6. Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    8. Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
    9. Neshat, Mehdi & Nezhad, Meysam Majidi & Mirjalili, Seyedali & Garcia, Davide Astiaso & Dahlquist, Erik & Gandomi, Amir H., 2023. "Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy," Energy, Elsevier, vol. 278(C).
    10. Hu, Shuai & Xiang, Yue & Zhang, Hongcai & Xie, Shanyi & Li, Jianhua & Gu, Chenghong & Sun, Wei & Liu, Junyong, 2021. "Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction," Applied Energy, Elsevier, vol. 293(C).
    11. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Li, Zhuo, 2021. "Feature extraction of meteorological factors for wind power prediction based on variable weight combined method," Renewable Energy, Elsevier, vol. 179(C), pages 1925-1939.
    12. Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
    13. Zhang, Yagang & Pan, Guifang & Chen, Bing & Han, Jingyi & Zhao, Yuan & Zhang, Chenhong, 2020. "Short-term wind speed prediction model based on GA-ANN improved by VMD," Renewable Energy, Elsevier, vol. 156(C), pages 1373-1388.
    14. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).
    2. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    3. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    4. Couto, António & Estanqueiro, Ana, 2022. "Enhancing wind power forecast accuracy using the weather research and forecasting numerical model-based features and artificial neuronal networks," Renewable Energy, Elsevier, vol. 201(P1), pages 1076-1085.
    5. Yuan Sun & Shiyang Zhang, 2024. "A Multiscale Hybrid Wind Power Prediction Model Based on Least Squares Support Vector Regression–Regularized Extreme Learning Machine–Multi-Head Attention–Bidirectional Gated Recurrent Unit and Data D," Energies, MDPI, vol. 17(12), pages 1-21, June.
    6. Sun, Shaolong & Du, Zongjuan & Jin, Kun & Li, Hongtao & Wang, Shouyang, 2023. "Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy," Applied Energy, Elsevier, vol. 350(C).
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    9. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    10. Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
    11. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    12. Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update," Applied Energy, Elsevier, vol. 340(C).
    13. Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
    14. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    15. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    16. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    17. Meng, Anbo & Chen, Shu & Ou, Zuhong & Xiao, Jianhua & Zhang, Jianfeng & Chen, Shun & Zhang, Zheng & Liang, Ruduo & Zhang, Zhan & Xian, Zikang & Wang, Chenen & Yin, Hao & Yan, Baiping, 2022. "A novel few-shot learning approach for wind power prediction applying secondary evolutionary generative adversarial network," Energy, Elsevier, vol. 261(PA).
    18. Cui, Xiwen & Yu, Xiaoyu & Niu, Dongxiao, 2024. "The ultra-short-term wind power point-interval forecasting model based on improved variational mode decomposition and bidirectional gated recurrent unit improved by improved sparrow search algorithm a," Energy, Elsevier, vol. 288(C).
    19. Zhu, Ting & Wang, Wenbo & Yu, Min, 2022. "A novel blood glucose time series prediction framework based on a novel signal decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.