Author
Listed:
- Kamila Ewelina Mazur
(Institute of Technology and Life Sciences—National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland)
- Witold Jan Wardal
(Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)
- Jan Barwicki
(Agency for Restructuring and Modernization of Agriculture in Warsaw, Poleczki, 02-822 Warsaw, Poland)
- Mikhail Tseyko
(POLBIOM Polish Biomass Society, 01-839 Warsaw, Poland)
Abstract
The main goal of the article is to present the effectiveness of biomass as a thermal insulator and estimate the global potential for using biomass, considering the perspective of sustainable development and improving energy efficiency in agricultural building construction. The article presents two types of piggery construction: one using typical materials like concrete and the other using biomass-based materials. The evaluation is based on carbon footprint and embodied energy indicators. The model calculations developed in this article may be used in the future for life cycle assessment (LCA) analyses of specific construction solutions for rural livestock buildings. Two model variants for constructing a pigsty with different insulating materials were compared. The TB (Traditional Building) variant consisted of layers of (AAC) Autoclaved Aerated Concrete, glass wool, and brick. The second model variant, HB (Hempcrete Building), was made of concrete blocks with the addition of industrial hemp ( Cannabis sativa L.) shives. Regarding footprint evaluation, bio-based materials often have a net-negative carbon footprint due to the sequestration effect. The results showed a significant difference in the carbon footprint of both TB and HB solutions—the carbon footprint of the HB variant was only 9.02% of that of the TB variant. The insulation properties of hempcrete were also compared to those of the most frequently used insulating materials in construction, such as glass wool and rock wool. The novelty of the study lies in analyzing the potential use of biomass for thermal insulation in livestock buildings, considering various raw materials, including their industrial properties and the ecological benefits resulting from their implementation. In addition, the authors focused on biomass thermal insulation from the perspective of sustainable development and improving energy efficiency in building construction. Our evaluation and selection of the best solutions are based on the indicators of embodied energy and carbon footprint.
Suggested Citation
Kamila Ewelina Mazur & Witold Jan Wardal & Jan Barwicki & Mikhail Tseyko, 2025.
"Thermal Insulation of Agricultural Buildings Using Different Biomass Materials,"
Energies, MDPI, vol. 18(3), pages 1-20, January.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:3:p:636-:d:1580329
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:636-:d:1580329. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.