Development of New Composite Beds for Enhancing the Heat Transfer in Adsorption Cooling Systems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Karol Sztekler, 2021. "Optimisation of Operation of Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(9), pages 1-20, May.
- Grabowska, Karolina & Krzywanski, Jaroslaw & Nowak, Wojciech & Wesolowska, Marta, 2018. "Construction of an innovative adsorbent bed configuration in the adsorption chiller - Selection criteria for effective sorbent-glue pair," Energy, Elsevier, vol. 151(C), pages 317-323.
- Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.
- Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Marcin Sowa, 2021. "Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(21), pages 1-27, November.
- Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
- Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
- Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
- Kavian, Soheil & Hakkaki-Fard, Ali & Jafari Mosleh, Hassan, 2020. "Energy performance and economic feasibility of hot spring-based district heating system – A case study," Energy, Elsevier, vol. 211(C).
- Tomasz Bujok & Piotr Boruta & Łukasz Mika & Karol Sztekler, 2021. "Analysis of Designs of Heat Exchangers Used in Adsorption Chillers," Energies, MDPI, vol. 14(23), pages 1-28, December.
- Junhyeok Yong & Junggyun Ham & Ohkyung Kwon & Honghyun Cho, 2021. "Experimental Investigation of the Heat Transfer Characteristics of Plate Heat Exchangers Using LiBr/Water as Working Fluid," Energies, MDPI, vol. 14(20), pages 1-15, October.
- Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
- Ahmed S. Alsaman & Ahmed A. Hassan & Ehab S. Ali & Ramy H. Mohammed & Alaa E. Zohir & Ayman M. Farid & Ayman M. Zakaria Eraqi & Hamdy H. El-Ghetany & Ahmed A. Askalany, 2022. "Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend," Energies, MDPI, vol. 15(21), pages 1-25, October.
- João M. S. Dias & Vítor A. F. Costa, 2021. "Modeling and Analysis of a Coated Tube Adsorber for Adsorption Heat Pumps," Energies, MDPI, vol. 14(21), pages 1-19, October.
- Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
- Anna Kulakowska & Anna Pajdak & Jaroslaw Krzywanski & Karolina Grabowska & Anna Zylka & Marcin Sosnowski & Marta Wesolowska & Karol Sztekler & Wojciech Nowak, 2020. "Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica Gel-Based Adsorption Bed," Energies, MDPI, vol. 13(6), pages 1-15, March.
- João M. S. Dias & Vítor A. F. Costa, 2022. "Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses," Clean Technol., MDPI, vol. 4(4), pages 1-10, November.
- Zhao, Chong & Wang, Yunfeng & Li, Ming & Zhao, Wenkui & Li, Xuejuan & Yu, Qiongfen & Huang, Mengxiao, 2020. "Impact of three different enhancing mass transfer operating characteristics on a solar adsorption refrigeration system with compound parabolic concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 1354-1366.
- Bartlomiej Nalepa & Tomasz Halon, 2021. "Recommendations for Running a Tandem of Adsorption Chillers Connected in Series and Powered by Low-Temperature Heat from District Heating Network," Energies, MDPI, vol. 14(16), pages 1-17, August.
- Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
- Marcin Sosnowski, 2019. "Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology," Energies, MDPI, vol. 12(24), pages 1-19, December.
- Karol Sztekler, 2021. "Optimisation of Operation of Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(9), pages 1-20, May.
- Li, Qiwei & Boeckmann, Olaf & Schaefer, Micha, 2024. "Systematic screening and evaluation for an optimal adsorbent in a facade-integrated adsorption-based solar cooling system for high-rise buildings," Energy, Elsevier, vol. 310(C).
More about this item
Keywords
adsorption chiller; composite beds; sorption isotherm; thermal conductivity; heat transfer; porous media;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:584-:d:1577617. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.