IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p555-d1576596.html
   My bibliography  Save this article

The Potential of a Thermoelectric Heat Dissipation System: An Analytical Study

Author

Listed:
  • Xuechun Li

    (School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China)

  • Rujie Shi

    (School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China)

  • Kang Zhu

    (School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China)

Abstract

Thermoelectric heat dissipation systems offer unique advantages over conventional systems, including vibration-free operation, environmental sustainability, and enhanced controllability. This study examined the benefits of incorporating a thermoelectric cooler (TEC) into conventional heat sinks and investigated strategies to improve heat dissipation efficiency. A theoretical model introducing a dimensionless evaluation index ( r q ) is proposed to assess the system’s performance, which measures the ratio of the heat dissipation density of a conventional heat dissipation system to that of a thermoelectric heat dissipation system. Here, we subjectively consider 0.9 as a cutoff, and when r q < 0.9 , the thermoelectric heat dissipation system shows substantial superiority over conventional ones. In contrast, for r q > 0.9 , the advantage of the thermoelectric system weakens, making conventional systems more attractive. This analysis examined the effects of engineering leg length ( L * ), the heat transfer allocation ratio ( r h ), and temperature difference ( Δ T ) on heat dissipation capabilities. The results indicated that under a fixed heat source temperature, heat sink temperature, and external heat transfer coefficient, an optimal engineering leg length exists, maximizing the system’s heat dissipation performance. Furthermore, a detailed analysis revealed that the thermoelectric system demonstrated exceptional performance under small temperature differences, specifically when the temperature difference was below 32 K with the current thermoelectric (TE) materials. For moderate temperature differences between 32 K and 60 K, the system achieved optimal performance when r h ≥ − 2.4 + 1.37 e 0.019 Δ T . This work establishes a theoretical foundation for applying thermoelectric heat dissipation systems and provides valuable insights into optimizing hybrid heat dissipation systems.

Suggested Citation

  • Xuechun Li & Rujie Shi & Kang Zhu, 2025. "The Potential of a Thermoelectric Heat Dissipation System: An Analytical Study," Energies, MDPI, vol. 18(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:555-:d:1576596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Limei & Pu, Xiwang & Sun, Yongjun & Chen, Jiongde, 2016. "A study on thermoelectric technology application in net zero energy buildings," Energy, Elsevier, vol. 113(C), pages 9-24.
    2. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    3. Zhao, Linghao & Liu, Duo & Feng, Jianghe & Min, Erbiao & Li, Juan & Ling, Yifeng & Li, Hao & Zhao, Degang & Liu, Ruiheng & Sun, Rong, 2024. "Simultaneous optimization of cooling temperature difference and efficiency for multi-stage thermoelectric device," Applied Energy, Elsevier, vol. 373(C).
    4. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    2. Liu, Xun & Zhang, Chen-Feng & Zhou, Jian-Gang & Xiong, Xin & Wang, Yi-Ping, 2022. "Thermal performance of battery thermal management system using fins to enhance the combination of thermoelectric Cooler and phase change Material," Applied Energy, Elsevier, vol. 322(C).
    3. Pietrzyk, Kyle & Ohara, Brandon & Watson, Thomas & Gee, Madison & Avalos, Daniel & Lee, Hohyun, 2016. "Thermoelectric module design strategy for solid-state refrigeration," Energy, Elsevier, vol. 114(C), pages 823-832.
    4. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    5. Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
    6. Pourhedayat, Samira, 2018. "Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions," Applied Energy, Elsevier, vol. 229(C), pages 364-374.
    7. Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
    8. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    9. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    10. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    11. Gaoju Xia & Huadong Zhao & Jingshuang Zhang & Haonan Yang & Bo Feng & Qi Zhang & Xiaohui Song, 2021. "Study on Performance of the Thermoelectric Cooling Device with Novel Subchannel Finned Heat Sink," Energies, MDPI, vol. 15(1), pages 1-14, December.
    12. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    13. Rahimi, Elnaz & Babapoor, Aziz & Moradi, Gholamreza & Kalantari, Saba & Monazzam Esmaeelpour, Mohammadreza, 2024. "Personal cooling garments and phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    14. Su, Shanhe & Liu, Tie & Wang, Junyi & Chen, Jincan, 2014. "Evaluation of temperature-dependent thermoelectric performances based on PbTe1−yIy and PbTe: Na/Ag2Te materials," Energy, Elsevier, vol. 70(C), pages 79-85.
    15. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    16. Zhao, Linghao & Liu, Duo & Feng, Jianghe & Min, Erbiao & Li, Juan & Ling, Yifeng & Li, Hao & Zhao, Degang & Liu, Ruiheng & Sun, Rong, 2024. "Simultaneous optimization of cooling temperature difference and efficiency for multi-stage thermoelectric device," Applied Energy, Elsevier, vol. 373(C).
    17. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    18. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
    19. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
    20. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Parametric study of a thermoelectric module used for both power generation and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 542-552.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:555-:d:1576596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.