IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p514-d1574361.html
   My bibliography  Save this article

Engineering of Hybrid SiO 2 @{N-P-Fe} Catalysts with Double-Ligand for Efficient H 2 Production from HCOOH

Author

Listed:
  • Anna Sotiriou

    (Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

  • Eleni Aspri

    (Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

  • Yiannis Deligiannakis

    (Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece)

  • Maria Louloudi

    (Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

Abstract

Two Fe-based hybrids, [SiO 2 @NP(Ph) 2 /Fe II /PP 3 ] and [SiO 2 @NP(t-Bu) 2 /Fe II /PP 3 ], were synthesized using the double-ligand approach by covalently grafting NP ligands onto the surface of SiO 2 . Both catalytic systems were evaluated for H 2 production through formic acid dehydrogenation (FADH), revealing important efficiency without requiring additional additives and/or co-catalysts. During the continuous addition of FA, [SiO 2 @NP(Ph) 2 /Fe II /PP 3 ] and [SiO 2 @NP(t-Bu) 2 /Fe II /PP 3 ] demonstrated great stability, achieving total TONs = 20,636 and 20,854, respectively. FT-IR and Raman spectroscopy provided insights into the role of NP ligands, such as NP(Ph) 2 and NP(t-Bu) 2 , on the assembly and structural configuration of active hybrid Fe catalysts and their ability to dehydrogenate formic acid. Additional studies, including in situ mapping of the solution potential (E h ) of the catalytic reaction and an Arrhenius study of the activation energy (E a ), revealed a correlation between E a and H 2 production rates: the system [SiO 2 @NP(Ph) 2 /Fe II /PP 3 ] with an E a = 29.4 KJ/mol shows an H 2 production rate of 58 mL-H 2 /min, while [SiO 2 @NP(t-Bu) 2 /Fe II /PP 3 ] with a E a = 50.6 KJ/mol shows an H 2 production rate of 55 mL-H 2 /min. This is the first example of a heterogeneous FADH system where the original strategy of a “double-ligand” has been demonstrated for homogeneous FADH catalytic systems. Herein we demonstrate that we can engineer a decrease in the activation barrier Ea via two synergistic steps: (i) via grafting of the NP ligand onto SiO 2 and (ii) using PP 3 as double ligand. This strategy leads to a boost in the H 2 production efficiency of [SiO 2 @NP(Ph) 2 /Fe II /PP 3 ] as a heterogeneous catalyst, which for the first time has been shown to be able to outperform the parental reference/homogenous catalyst [Fe II /PP 3 ].

Suggested Citation

  • Anna Sotiriou & Eleni Aspri & Yiannis Deligiannakis & Maria Louloudi, 2025. "Engineering of Hybrid SiO 2 @{N-P-Fe} Catalysts with Double-Ligand for Efficient H 2 Production from HCOOH," Energies, MDPI, vol. 18(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:514-:d:1574361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Kim Hanh & Kakinaka, Makoto, 2019. "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, Elsevier, vol. 132(C), pages 1049-1057.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Haiping & Huang, Baolian & Sun, Aijun, 2023. "How do mineral resources influence eco-sustainability in China? Dynamic role of renewable energy and green finance," Resources Policy, Elsevier, vol. 85(PA).
    2. Mohammad Mafizur Rahman & Nahid Sultana, 2024. "Nexus of Human Development and Environmental Quality in Low-Income and Developing Countries: Do Renewable Energy and Good Governance Matter?," Sustainability, MDPI, vol. 16(13), pages 1-18, June.
    3. Martín Olivera & Verónica Segarra, 2021. "Calidad ambiental y crecimiento económico: análisis dinámico para América Latina y el Caribe," Revista de Economía del Rosario, Universidad del Rosario, vol. 24(2), December.
    4. Adekoya, Oluwasegun B. & Olabode, Joshua K. & Rafi, Syed K., 2021. "Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions," Renewable Energy, Elsevier, vol. 179(C), pages 1836-1848.
    5. Liton Chandra Voumik & Md. Azharul Islam & Abidur Rahaman & Md. Maznur Rahman, 2022. "Emissions of carbon dioxide from electricity production in ASEAN countries: GMM and quantile regression analysis," SN Business & Economics, Springer, vol. 2(9), pages 1-20, September.
    6. Rusu, Eugen, 2020. "An evaluation of the wind energy dynamics in the Baltic Sea, past and future projections," Renewable Energy, Elsevier, vol. 160(C), pages 350-362.
    7. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    8. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    9. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    10. Ehigiamusoe, Kizito Uyi & Dogan, Eyup, 2022. "The role of interaction effect between renewable energy consumption and real income in carbon emissions: Evidence from low-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Sandra Chukwudumebi Obiora & Olusola Bamisile & Evans Opoku-Mensah & Adasa Nkrumah Kofi Frimpong, 2020. "Impact of Banking and Financial Systems on Environmental Sustainability: An Overarching Study of Developing, Emerging, and Developed Economies," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    12. Ahmed Samour & Omar Ikbal Tawfik & Magdalena Radulescu & Cristina Florentina Baldan, 2023. "Do Oil Price, Renewable Energy, and Financial Development Matter for Environmental Quality in Oman? Novel Insights from Augmented ARDL Approach," Energies, MDPI, vol. 16(12), pages 1-14, June.
    13. Md. Hasanur Rahman & Liton Chandra Voumik & Md. Jamsedul Islam & Md. Abdul Halim & Miguel Angel Esquivias, 2022. "Economic Growth, Energy Mix, and Tourism-Induced EKC Hypothesis: Evidence from Top Ten Tourist Destinations," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    14. Rusu, Eugen, 2022. "Assessment of the wind power dynamics in the North Sea under climate change conditions," Renewable Energy, Elsevier, vol. 195(C), pages 466-475.
    15. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    16. Fan, Weiyang & Hao, Yu, 2020. "An empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in China," Renewable Energy, Elsevier, vol. 146(C), pages 598-609.
    17. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    18. Sandu, Suwin & Yang, Muyi & Phoumin, Han & Aghdam, Reza Fathollahzadeh & Shi, Xunpeng, 2021. "Assessment of accessible, clean and efficient energy systems: A statistical analysis of composite energy performance indices," Applied Energy, Elsevier, vol. 304(C).
    19. Borozan, Dj, 2022. "Asymmetric effects of policy uncertainty on renewable energy consumption in G7 countries," Renewable Energy, Elsevier, vol. 189(C), pages 412-420.
    20. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Hafiz Waqas Kamran, 2021. "Climate Change and Energy Consumption Patterns in Thailand: Time Trends During 1988-2013," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 571-576.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:514-:d:1574361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.