IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p458-d1572273.html
   My bibliography  Save this article

Characteristics of High-Temperature Torrefied Wood Pellets for Use in a Blast Furnace Injection System

Author

Listed:
  • Richard Deutsch

    (BEST—Bioenergy and Sustainable Technologies GmbH, 8010 Graz, Austria
    Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria)

  • Norbert Kienzl

    (BEST—Bioenergy and Sustainable Technologies GmbH, 8010 Graz, Austria)

  • Hugo Stocker

    (voestalpine Stahl Donawitz GmbH, 8700 Leoben, Austria)

  • Christoph Strasser

    (BEST—Bioenergy and Sustainable Technologies GmbH, 8010 Graz, Austria)

  • Gernot Krammer

    (Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria)

Abstract

As the iron and steel industry needs to cut its CO 2 emissions drastically, much effort has been put into establishing new—less greenhouse-gas-intensive—production lines fueled by hydrogen and electricity. Blast furnaces, as a central element of hot iron production, are expected to lose importance, at least in European production strategies. Yet, blast furnaces could play a significant role in the transitional phase, as they allow for the implementation of another CO 2 -reducing fuel, carbonized wood reducing agents, as a substitute for coal in auxiliary injection systems, which are currently widely used. Wood carbonization yields vastly differing fuel types depending on the severity of the treatment process, mainly its peak temperature. The goal of this study is to define the lowest treatment temperature, i.e., torrefaction temperature, which results in a biogenic reducing agent readily employable in existing coal injection systems, focusing on their conveying properties. Samples of different treatment temperatures ranging from 285 to 340 °C were produced and compared to injection coal regarding their chemical and mechanical properties. The critical conveyability in a standard dense-phase pneumatic conveying system was demonstrated with a sample of pilot-scale high-temperature torrefaction.

Suggested Citation

  • Richard Deutsch & Norbert Kienzl & Hugo Stocker & Christoph Strasser & Gernot Krammer, 2025. "Characteristics of High-Temperature Torrefied Wood Pellets for Use in a Blast Furnace Injection System," Energies, MDPI, vol. 18(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:458-:d:1572273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Tianyang Lei & Daoping Wang & Xiang Yu & Shijun Ma & Weichen Zhao & Can Cui & Jing Meng & Shu Tao & Dabo Guan, 2023. "Global iron and steel plant CO2 emissions and carbon-neutrality pathways," Nature, Nature, vol. 622(7983), pages 514-520, October.
    3. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    2. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    3. Tianjie Fu & Peiyu Li & Chenke Shi & Youzhu Liu, 2024. "Digital-Twin-Based Monitoring System for Slab Production Process," Future Internet, MDPI, vol. 16(2), pages 1-16, February.
    4. Suad Al Hosni & Marta Domini & Reza Vahidzadeh & Giorgio Bertanza, 2024. "Potential and Environmental Benefits of Biochar Utilization for Coal/Coke Substitution in the Steel Industry," Energies, MDPI, vol. 17(11), pages 1-16, June.
    5. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    6. Egerer, Jonas & Farhang-Damghani, Nima & Grimm, Veronika & Runge, Philipp, 2024. "The industry transformation from fossil fuels to hydrogen will reorganize value chains: Big picture and case studies for Germany," Applied Energy, Elsevier, vol. 358(C).
    7. Ren, Xiaohang & Fu, Chenjia & Jin, Chenglu & Li, Yuyi, 2024. "Dynamic causality between global supply chain pressures and China's resource industries: A time-varying Granger analysis," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    8. Hu, Hang & Yang, Lingzhi & Yang, Sheng & Zou, Yuchi & Wang, Shuai & Chen, Feng & Guo, Yufeng, 2024. "Development and assessment of an integrated wind energy system for green steelmaking based on electric arc furnace route," Energy, Elsevier, vol. 302(C).
    9. Sandra Kiessling & Hamidreza Gohari Darabkhani & Abdel-Hamid Soliman, 2022. "The Bio Steel Cycle: 7 Steps to Net-Zero CO 2 Emissions Steel Production," Energies, MDPI, vol. 15(23), pages 1-22, November.
    10. Mao, Yuanhao & Sultan, Sayd & Fan, Huifeng & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents," Applied Energy, Elsevier, vol. 369(C).
    11. Wang, R.Q. & Jiang, L. & Wang, Y.D. & Font-Palma, C. & Skoulou, V. & Roskilly, A.P., 2024. "Woody biomass waste derivatives in decarbonised blast furnace ironmaking process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Toloue Farrokh, Najibeh & Suopajärvi, Hannu & Mattila, Olli & Umeki, Kentaro & Phounglamcheik, Aekjuthon & Romar, Henrik & Sulasalmi, Petri & Fabritius, Timo, 2018. "Slow pyrolysis of by-product lignin from wood-based ethanol production– A detailed analysis of the produced chars," Energy, Elsevier, vol. 164(C), pages 112-123.
    13. Alessandro A. Carmona-Martínez & Anatoli Rontogianni & Myrto Zeneli & Panagiotis Grammelis & Olgu Birgi & Rainer Janssen & Benedetta Di Costanzo & Martijn Vis & Bas Davidis & Patrick Reumerman & Asier, 2024. "Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
    14. Michał Rejdak & Michał Książek & Małgorzata Wojtaszek-Kalaitzidi & Anna Rodź & Bartosz Mertas & Sten Yngve Larsen & Piotr Szecówka, 2024. "A Study on Bio-Coke Production—The Influence of Biochar Addition to the Coking Blend on Bio-Coke Quality Parameters," Energies, MDPI, vol. 17(24), pages 1-22, December.
    15. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    16. Sam Reis & Peter J. Holliman & Ciaran Martin & Eurig Jones, 2023. "Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    17. Mustafa Naimoğlu & Andrew Adewale Alola, 2025. "Analyzing environmental delivery of industrial technology and energy use-loss in China," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 14(1), pages 1-17, December.
    18. Dolf Gielen & Deger Saygin & Emanuele Taibi & Jean‐Pierre Birat, 2020. "Renewables‐based decarbonization and relocation of iron and steel making: A case study," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1113-1125, October.
    19. Ubando, Aristotle T. & Chen, Wei-Hsin & Ong, Hwai Chyuan, 2019. "Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions," Energy, Elsevier, vol. 180(C), pages 968-977.
    20. Zichao Wei & Kai Xue & Guangwen Hu & Yufeng Wu & Yanfen Wang, 2024. "The Decarbonizing Strategies of China’s Iron and Steelmaking Industry: A Comprehensive Perspective," Sustainability, MDPI, vol. 16(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:458-:d:1572273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.