IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p412-d1570088.html
   My bibliography  Save this article

Development Trends of Air Flow Velocity Measurement Methods and Devices in Renewable Energy

Author

Listed:
  • Paweł Ligęza

    (Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059 Krakow, Poland)

  • Paweł Jamróz

    (Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059 Krakow, Poland)

  • Katarzyna Socha

    (Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059 Krakow, Poland)

Abstract

This article presents an overview of airflow velocity measurement methods applied to renewable energy. Basic measurement methods used in this field are discussed: tachometric, ultrasonic, and calorimetric anemometry. The principle of operation and basic properties of anemometers are presented, and based on publications from the last decade, a systematic review of development directions and trends in this field is made. The aim of the article is to familiarize people dealing with renewable energy problems, in particular wind energy, with the current state of knowledge in the field of anemometric measurements, properties of individual types of measuring devices, as well as directions of development of measurement tools. This will allow for the optimization of processes in the field of wind energy, in particular in the selection of the location of the energy facility, implementation of investments and control, diagnostics, and monitoring during operation. The selection of metrological tools adequate to the problem also allows for ensuring an appropriate level of work safety and environmental and ecological harmony and supporting the process of sustainable development.

Suggested Citation

  • Paweł Ligęza & Paweł Jamróz & Katarzyna Socha, 2025. "Development Trends of Air Flow Velocity Measurement Methods and Devices in Renewable Energy," Energies, MDPI, vol. 18(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:412-:d:1570088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Alwaeli & Viktoria Mannheim, 2022. "Investigation into the Current State of Nuclear Energy and Nuclear Waste Management—A State-of-the-Art Review," Energies, MDPI, vol. 15(12), pages 1-22, June.
    2. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso & Guido Coletta & Luigi Pellegrino, 2022. "Biomass-Based Renewable Energy Community: Economic Analysis of a Real Case Study," Energies, MDPI, vol. 15(15), pages 1-24, August.
    3. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems," Energies, MDPI, vol. 16(10), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da-Woon Jung & Chung-Won Seo & Young-Chan Lim & Dong-Sun Kim & Seung-Yul Lee & Hyun-Kyu Suh, 2023. "Analysis of Flow Characteristics of a Debris Filter in a Condenser Tube Cleaning System," Energies, MDPI, vol. 16(11), pages 1-15, June.
    2. Myriam Caratù & Valerio Brescia & Ilaria Pigliautile & Paolo Biancone, 2023. "Assessing Energy Communities’ Awareness on Social Media with a Content and Sentiment Analysis," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    3. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    4. González, Arnau & Arranz-Piera, Pol & Olives, Borja & Ivancic, Aleksandar & Pagà, Conrad & Cortina, Marc, 2023. "Thermal energy community-based multi-dimensional business model framework and critical success factors investigation in the mediterranean region of the EU," Technology in Society, Elsevier, vol. 75(C).
    5. Hind Barghash & Zuhoor AlRashdi & Kenneth E. Okedu & Peter Desmond, 2022. "Life-Cycle Assessment Study for Bio-Hydrogen Gas Production from Sewage Treatment Plants Using Solar PVs," Energies, MDPI, vol. 15(21), pages 1-17, October.
    6. Zecheng Zhao & Zhiwen Wang & Hu Wang & Hongwei Zhu & Wei Xiong, 2023. "Conventional and Advanced Exergy Analyses of Industrial Pneumatic Systems," Energies, MDPI, vol. 16(16), pages 1-23, August.
    7. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Maria Vicidomini, 2024. "A Dynamic Analysis of Biomethane Reforming for a Solid Oxide Fuel Cell Operating in a Power-to-Heat System Integrated into a Renewable Energy Community," Energies, MDPI, vol. 17(13), pages 1-21, June.
    8. Judit Lovasné Avató & Viktoria Mannheim, 2022. "Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios," Energies, MDPI, vol. 15(15), pages 1-20, July.
    9. Viktoria Mannheim & Károly Nehéz & Salman Brbhan & Péter Bencs, 2023. "Primary Energy Resources and Environmental Impacts of Various Heating Systems Based on Life Cycle Assessment," Energies, MDPI, vol. 16(19), pages 1-23, October.
    10. Ryszard Dindorf, 2024. "Study of the Energy Efficiency of Compressed Air Storage Tanks," Sustainability, MDPI, vol. 16(4), pages 1-37, February.
    11. Viktoria Mannheim & Weronika Kruszelnicka, 2023. "Relation between Scale-Up and Life Cycle Assessment for Wet Grinding Process of Pumice," Energies, MDPI, vol. 16(11), pages 1-16, June.
    12. Khan, Muhammad Salman & Bin, Guo & Xuebing, Peng & Song, Yunthao, 2024. "Design and optimization of power conversion system for a steady state CFETR power plant," Energy, Elsevier, vol. 308(C).
    13. Viktoria Mannheim & Judit Lovasné Avató, 2023. "Life-Cycle Assessments of Meat-Free and Meat-Containing Diets by Integrating Sustainability and Lean: Meat-Free Dishes Are Sustainable," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    14. Chien, Fengsheng & Sadiq, Muhammad & Li, Li & Sharif, Arshian, 2023. "The role of sustainable energy utility, natural resource utilization and waste management in reducing energy poverty: Evidence from South Asian countries," Utilities Policy, Elsevier, vol. 82(C).
    15. Ryszard Dindorf, 2025. "Comprehensive Review Comparing the Development and Challenges in the Energy Performance of Pneumatic and Hydropneumatic Suspension Systems," Energies, MDPI, vol. 18(2), pages 1-59, January.
    16. Yue Tong & Yao Yue & Zhongkai Huang & Liping Zhu & Zhihou Li & Wei Zhang, 2022. "Modified RMR Rock Mass Classification System for Preliminary Selection of Potential Sites of High-Level Radioactive Waste Disposal Engineering," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    17. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).
    18. Dominik Gryboś & Jacek S. Leszczyński, 2024. "A Review of Energy Overconsumption Reduction Methods in the Utilization Stage in Compressed Air Systems," Energies, MDPI, vol. 17(6), pages 1-22, March.
    19. Jan Markowski & Dominik Gryboś & Jacek Leszczyński & Yohiside Suwa, 2023. "Exhaust Air Recovery System from the Utilisation Stage of Pneumatic System in Double Transmission Double Expansion Approach," Energies, MDPI, vol. 16(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:412-:d:1570088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.