IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p410-d1570042.html
   My bibliography  Save this article

Regenerative Braking Energy Flow Control Algorithm for Power Grid Voltage Stabilization in Mobile Energy Storage Systems

Author

Listed:
  • Ivan Župan

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Viktor Šunde

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Željko Ban

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Branimir Novoselnik

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

The paper presents a method for managing the energy storage and use of a mobile supercapacitor energy storage system (SC ESS) on a tram vehicle for the purpose of active voltage stabilization of the power grid. The method is based on an algorithm that identifies the need to utilize the energy of the SC ESS depending on changes in the voltage of the power grid caused by the driving of other nearby tram vehicles. The waveform of the current flowing into or out of the SC ESS during this control is determined based on Pontryagin’s minimum principle, which optimizes the minimum change in the voltage level at the pantograph and the minimum temperature of the supercapacitor. In this way, this approach aims to minimize the changes in the voltage of the power grid caused by other vehicles and to maximize the lifespan of the supercapacitor. The algorithm was tested within the MATLAB/Simulink R2022b programming environment and experimentally validated with an HIL simulation experiment in a laboratory setup to emulate the rail vehicle system, the supercapacitor, and the power supply network.

Suggested Citation

  • Ivan Župan & Viktor Šunde & Željko Ban & Branimir Novoselnik, 2025. "Regenerative Braking Energy Flow Control Algorithm for Power Grid Voltage Stabilization in Mobile Energy Storage Systems," Energies, MDPI, vol. 18(2), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:410-:d:1570042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    2. Ivan Župan & Viktor Šunde & Željko Ban & Branimir Novoselnik, 2023. "An Energy Flow Control Algorithm of Regenerative Braking for Trams Based on Pontryagin’s Minimum Principle," Energies, MDPI, vol. 16(21), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    2. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    3. Ģirts Staņa & Kaspars Kroičs, 2024. "Energy Loss Analysis of Dual Power Supply-Powered Motor Drive During Supercapacitor Energy Storage Discharge," Energies, MDPI, vol. 18(1), pages 1-14, December.
    4. Naseri, F. & Karimi, S. & Farjah, E. & Schaltz, E., 2022. "Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Saheli Biswas & Shambhu Singh Rathore & Aniruddha Pramod Kulkarni & Sarbjit Giddey & Sankar Bhattacharya, 2021. "A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel," Energies, MDPI, vol. 14(15), pages 1-18, July.
    6. Wang, Ji-Xiang & Zhong, Mingliang & Wu, Zhe & Guo, Mengyue & Liang, Xin & Qi, Bo, 2022. "Ground-based investigation of a directional, flexible, and wireless concentrated solar energy transmission system," Applied Energy, Elsevier, vol. 322(C).
    7. Guangheng Qi & Ning Ma & Kai Wang, 2024. "Predicting the Remaining Useful Life of Supercapacitors under Different Operating Conditions," Energies, MDPI, vol. 17(11), pages 1-16, May.
    8. Andrzej Nowrot & Anna Manowska, 2023. "Supercapacitors as Key Enablers of Decarbonization and Renewable Energy Expansion in Poland," Sustainability, MDPI, vol. 16(1), pages 1-27, December.
    9. Dong-Hee Yoon, 2022. "A Study on the Development of a Novel ESS Simulation Model for Transmission-Level Power-System Analysis," Energies, MDPI, vol. 15(23), pages 1-19, December.
    10. Radosław Kwarciany & Marcin Fiedur & Bogdan Saletnik, 2024. "Opportunities and Threats for Supercapacitor Technology Based on Biochar—A Review," Energies, MDPI, vol. 17(18), pages 1-18, September.
    11. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    12. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    13. Xu, Mian & Zhu, Xianqing & Lai, Yiming & Xia, Ao & Huang, Yun & Zhu, Xun & Liao, Qiang, 2024. "Production of hierarchical porous bio‑carbon based on deep eutectic solvent fractionated lignin nanoparticles for high-performance supercapacitor," Applied Energy, Elsevier, vol. 353(PA).
    14. Caparrós Mancera, Julio José & Saenz, Jaime Luis & López, Eduardo & Andújar, José Manuel & Segura Manzano, Francisca & Vivas, Francisco José & Isorna, Fernando, 2022. "Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid," Applied Energy, Elsevier, vol. 308(C).
    15. Maziarka, Przemyslaw & Sommersacher, Peter & Wang, Xia & Kienzl, Norbert & Retschitzegger, Stefan & Prins, Wolter & Hedin, Niklas & Ronsse, Frederik, 2021. "Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications," Applied Energy, Elsevier, vol. 286(C).
    16. Muhammad Sarmad Raza & Muhammad Irfan Abid & Muhammad Akmal & Hafiz Mudassir Munir & Zunaib Maqsood Haider & Muhammad Omer Khan & Basem Alamri & Mohammed Alqarni, 2024. "A Comprehensive Assessment of Storage Elements in Hybrid Energy Systems to Optimize Energy Reserves," Sustainability, MDPI, vol. 16(20), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:410-:d:1570042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.