IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p333-d1566377.html
   My bibliography  Save this article

Coordinated Volt/VAR Control in Distribution Networks Considering Demand Response via Safe Deep Reinforcement Learning

Author

Listed:
  • Dong Hua

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China)

  • Fei Peng

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China)

  • Suisheng Liu

    (Guangdong KingWa Energy Technology Co., Ltd., Guangzhou 510000, China)

  • Qinglin Lin

    (Guangdong KingWa Energy Technology Co., Ltd., Guangzhou 510000, China)

  • Jiahui Fan

    (Guangdong KingWa Energy Technology Co., Ltd., Guangzhou 510000, China)

  • Qian Li

    (Consultation and Evaluation Center, Energy Development Research Institute, CSG, Guangzhou 510000, China)

Abstract

Volt–VAR control (VVC) is essential in maintaining voltage stability and operational efficiency in distribution networks, particularly with the increasing integration of distributed energy resources. Traditional methods often struggle to manage real-time fluctuations in demand and generation. First, various resources such as static VAR compensators, photovoltaic systems, and demand response strategies are incorporated into the VVC scheme to enhance voltage regulation. Then, the VVC scheme is formulated as a constrained Markov decision process. Next, a safe deep reinforcement learning (SDRL) algorithm is proposed, incorporating a novel Lagrange multiplier update mechanism to ensure that the control policies adhere to safety constraints during the learning process. Finally, extensive simulations with the IEEE-33 test feeder demonstrate that the proposed SDRL-based VVC approach effectively improves voltage regulation and reduces power losses.

Suggested Citation

  • Dong Hua & Fei Peng & Suisheng Liu & Qinglin Lin & Jiahui Fan & Qian Li, 2025. "Coordinated Volt/VAR Control in Distribution Networks Considering Demand Response via Safe Deep Reinforcement Learning," Energies, MDPI, vol. 18(2), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:333-:d:1566377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Yuanqi & Yu, Nanpeng, 2022. "Model-augmented safe reinforcement learning for Volt-VAR control in power distribution networks," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhipeng Jing & Lipo Gao & Chengao Wu & Dong Liang, 2025. "Linear Quadratic Regulator-Based Coordinated Voltage and Power Control for Flexible Distribution Networks," Energies, MDPI, vol. 18(2), pages 1-16, January.
    2. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    3. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    4. Kabir, Farzana & Yu, Nanpeng & Gao, Yuanqi & Wang, Wenyu, 2023. "Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems," Applied Energy, Elsevier, vol. 335(C).
    5. Zhang, Ziqi & Li, Peng & Ji, Haoran & Zhao, Jinli & Xi, Wei & Wu, Jianzhong & Wang, Chengshan, 2024. "Combined central-local voltage control of inverter-based DG in active distribution networks11The short version of the paper was presented at CUE2023. This paper is a substantial extension of the short," Applied Energy, Elsevier, vol. 372(C).
    6. Guo, Guodong & Zhang, Mengfan & Gong, Yanfeng & Xu, Qianwen, 2023. "Safe multi-agent deep reinforcement learning for real-time decentralized control of inverter based renewable energy resources considering communication delay," Applied Energy, Elsevier, vol. 349(C).
    7. Chen, Yongdong & Liu, Youbo & Zhao, Junbo & Qiu, Gao & Yin, Hang & Li, Zhengbo, 2023. "Physical-assisted multi-agent graph reinforcement learning enabled fast voltage regulation for PV-rich active distribution network," Applied Energy, Elsevier, vol. 351(C).
    8. Alex Chamba & Carlos Barrera-Singaña & Hugo Arcos, 2023. "Optimal Reactive Power Dispatch in Electric Transmission Systems Using the Multi-Agent Model with Volt-VAR Control," Energies, MDPI, vol. 16(13), pages 1-25, June.
    9. Prabawa, Panggah & Choi, Dae-Hyun, 2024. "Safe deep reinforcement learning-assisted two-stage energy management for active power distribution networks with hydrogen fueling stations," Applied Energy, Elsevier, vol. 375(C).
    10. Yu, Peipei & Zhang, Hongcai & Hu, Zechun & Song, Yonghua, 2025. "Voltage control of distribution grid with district cooling systems based on scenario-classified reinforcement learning," Applied Energy, Elsevier, vol. 377(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:333-:d:1566377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.