IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p272-d1563618.html
   My bibliography  Save this article

A Fuzzy Logic Technique for the Environmental Impact Assessment of Marine Renewable Energy Power Plants

Author

Listed:
  • Pamela Flores

    (Engineering Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico)

  • Edgar Mendoza

    (Engineering Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico)

Abstract

The application of fuzzy logic to environmental impact assessment (EIA) provides a robust method to address uncertainties and subjectivities inherent in evaluating complex environmental systems. This is particularly relevant in ocean renewable energy projects, where predicting environmental impacts is challenging due to the dynamic nature of marine environments. We conducted a comprehensive literature review to identify the types of impacts currently being investigated, assessed, and monitored in existing marine energy conversion projects. Based on these foundations, we developed both traditional and fuzzy mythologies for EIA. The fuzzy logic methodology approach allows for the incorporation of uncertainties into the assessment process, converting qualitative assessments into quantifiable data and linguistic levels and enhancing decision-making accuracy. We tested this fuzzy methodology across four types of ocean energy devices: floating, submerged, fixed to the ocean floor, and onshore. Finally, we applied the methodology to the EIA of a marine energy project in the Cozumel Channel, Quintana Roo, Mexico. The results demonstrate that fuzzy logic provides a more flexible and reliable evaluation of environmental impacts, contributing to more effective environmental management and sustainable development in marine renewable energy contexts.

Suggested Citation

  • Pamela Flores & Edgar Mendoza, 2025. "A Fuzzy Logic Technique for the Environmental Impact Assessment of Marine Renewable Energy Power Plants," Energies, MDPI, vol. 18(2), pages 1-30, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:272-:d:1563618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/272/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:272-:d:1563618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.