IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p234-d1561855.html
   My bibliography  Save this article

A Theoretical and Test Analysis of Heat and Humidity Transfer for Deeply Buried Underground Corridors with Different Shapes

Author

Listed:
  • Tong Ren

    (College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China)

  • Mengzhuo Li

    (College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China)

  • Long He

    (College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China)

  • De Wang

    (College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China)

  • Lingbo Kong

    (College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China)

Abstract

Moisture generation in the ventilation projects of deeply buried underground corridors affects the underground building environment and personnel health. In order to master the heat and humidity transfer law of underground corridors, this paper establishes a mathematical model by theoretical analysis, and the application of the theoretical model in engineering calculation is verified by a field test. It is found that the ventilation efficiency and heat and humidity transfer effect are related to corridor shape. The results show that under the same cross-sectional area, the average temperature drop and humidity of a rectangular corridor are 0.25% and 0.3% higher than that of an arch corridor, and 0.8% and 0.9% higher than that of a circular corridor. Under the condition of constant section circumference, the average temperature drop and humidity of a rectangular corridor are 0.51% and 0.62% higher than that of an arch corridor, and 1.37% and 1.58% higher than that of a circular corridor. When the equivalent diameter is the same, there is almost no difference in the heat and humidity transfer effect of the three shaped corridors.

Suggested Citation

  • Tong Ren & Mengzhuo Li & Long He & De Wang & Lingbo Kong, 2025. "A Theoretical and Test Analysis of Heat and Humidity Transfer for Deeply Buried Underground Corridors with Different Shapes," Energies, MDPI, vol. 18(2), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:234-:d:1561855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhiqing & Wang, Su & Pan, Mingzhang & Lv, Junshuai & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Utilization of hydrogen-diesel blends for the improvements of a dual-fuel engine based on the improved Taguchi methodology," Energy, Elsevier, vol. 292(C).
    2. Wang, Tao & Ma, Mengru & Ren, Zhili & Yuan, Xiaoqing & Gao, Xiangkui & Xiao, Yimin, 2024. "Numerical analysis of heat and mass transfer in separated ventilation of deeply buried long air intake tunnels," Energy, Elsevier, vol. 304(C).
    3. Fredrik Skaug Fadnes & Mohsen Assadi, 2024. "Utilizing Wastewater Tunnels as Thermal Reservoirs for Heat Pumps in Smart Cities," Energies, MDPI, vol. 17(19), pages 1-35, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Changling & E, Jiaqiang & Kou, Chuanfu & Han, Dandan & Han, Chang & Tan, Yan & Deng, Yuanwang, 2024. "Investigation on the hydrocarbon adsorption performance enhancement of the ZSM-5 zeolite with different Si/Al ratio in the cold start process of the gasoline engine," Energy, Elsevier, vol. 300(C).
    2. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    3. Zhang, Zhiqing & Liu, Hui & Yang, Dayong & Li, Junming & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Performance enhancements of power density and exergy efficiency for high-temperature proton exchange membrane fuel cell based on RSM-NSGA III," Energy, Elsevier, vol. 301(C).
    4. Jia, Guohai & Gao, Sheng & Shu, Xiong & Ren, Bing & Zhang, Bin & Ma, Guangyu & Zhang, Jian & Liu, Hui & Li, Dongmei, 2024. "Multi-objective optimization of emission parameters of a diesel engine using oxygenated fuel and pilot injection strategy based on RSM-NSGA III," Energy, Elsevier, vol. 293(C).
    5. Tian, Jie & Xiong, Yong & Liu, Zhenge & Wang, Lu & Wang, Yongqi & Yin, Wei & Cheng, Yong & Zhao, Qingwu, 2024. "Experimental study on the discharge characteristics of high-voltage nanosecond pulsed discharges and its effect on the ignition and combustion processes," Applied Energy, Elsevier, vol. 374(C).
    6. Zhang, Zhiqing & Zhao, Ziheng & Tan, Dongli & Zhang, Bin & Yin, Zibin & Cui, Shuwan & Li, Junming, 2024. "Multi-objective optimization of chemical reaction characteristics of selective catalytic reduction in denitrification of diesel engine using ELM-MOPSO methodology," Energy, Elsevier, vol. 311(C).
    7. Guan, Wei & Gu, Jinkai & Pan, Xiubin & Pan, Mingzhang & Wang, Xinyan & Zhao, Hua & Tan, Dongli & Fu, Changcheng & Pedrozo, Vinícius B. & Zhang, Zhiqing, 2024. "Improvement of the light-load combustion control strategy for a heavy-duty diesel engine fueled with diesel/methonal by RSM-NSGA III," Energy, Elsevier, vol. 297(C).
    8. Zhang, Zhiqing & Hu, Jingyi & Yang, Dayong & Yin, Zibin & Lu, Kai & Tan, Dongli, 2024. "A comprehensive assessment over the environmental impact and combustion efficiency of using ammonia/ hydrogen/diesel blends in a diesel engine," Energy, Elsevier, vol. 303(C).
    9. Pan, Mingzhang & Fu, Changcheng & Cao, Xinxin & Guan, Wei & Liang, Lu & Li, Ding & Gu, Jinkai & Tan, Dongli & Zhang, Zhiqing & Man, Xingjia & Ye, Nianye & Qin, Haifeng, 2024. "An energy management strategy for fuel cell hybrid electric vehicle based on HHO-BiLSTM-TCN-self attention speed prediction," Energy, Elsevier, vol. 307(C).
    10. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    11. Tan, Yan & E, Jiaqiang & Kou, Chuanfu & Feng, Changlin & Han, Dandan, 2024. "Effects of critical structure parameters on conversion performance enhancement of a Pd–Rh dual-carrier catalytic converter for heavy-duty natural gas engines," Energy, Elsevier, vol. 303(C).
    12. Shang, Yuqing & Li, Bei & Han, Bing & Tan, Qiong & Jin, Xin & Bi, Mingshu & Shu, Chi-Min, 2024. "GM(1,N) method for the prediction of critical failure pressure of type III tank in fire scenarios," Energy, Elsevier, vol. 303(C).
    13. E, Jiaqiang & Zhou, Haiyun & Kou, Chuanfu & Feng, Changlin & Zou, Zeyu, 2024. "Effect analysis on the hydrocarbon adsorption performance enhancement of the different zeolite molecular sieves in the gasoline engine under the cold start process," Energy, Elsevier, vol. 305(C).
    14. Zhang, Zhiqing & Li, Dongmei & Lan, Guanglin & Yin, Zibin & Pan, Mingzhang & Jiang, Feng & Li, Junming & Tan, Dongli, 2024. "Development and evaluation of mechanistic model for standard SCR, fast SCR, and NO2 SCR of NH3-SCR over Cu-ZSM-5," Energy, Elsevier, vol. 306(C).
    15. Liu, Jiangchuan & Ma, Qixin & Zhang, Quanchang, 2024. "A metaheuristic algorithm for model predictive control of the oil-cooled motor in hybrid electric vehicles," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:234-:d:1561855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.