IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p67-d1554846.html
   My bibliography  Save this article

Modelling and Simulation of Pico- and Nano-Grids for Renewable Energy Integration in a Campus Microgrid

Author

Listed:
  • Kuan Tak Tan

    (Engineering Cluster, Singapore Institute of Technology, Dover Drive, Singapore 138683, Singapore)

  • Sivaneasan Bala Krishnan

    (Engineering Cluster, Singapore Institute of Technology, Dover Drive, Singapore 138683, Singapore)

  • Andy Yi Zhuang Chua

    (School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

Abstract

Research in renewable energy sources and microgrid systems is critical for the evolving power industry. This paper examines the operational behavior of both pico- and nano-grids during transitions between grid-connected and islanded modes. Simulation results demonstrate that both grids effectively balance the power flow, regulate the state of charge (SOC), and stabilize the voltage during dynamic operational changes. Specific scenarios, including grid disconnection, load sharing, and weather-based energy fluctuations, were tested and validated. This paper models both pico-grids and nano-grids at the Singapore Institute of Technology Punggol Campus, incorporating solar PVs, energy storage systems (ESSs), power electronic converters, and both DC and AC loads, along with utility grid connections. The pico-grid includes a battery storage system, a single-phase inverter linked to a single-phase grid, and DC and AC loads. The nano-grid comprises solar PV panels, a boost converter, a battery storage system, a three-phase inverter connected to a three-phase grid, and AC loads. Both the pico-grid and nano-grid are configurable in standalone or grid-connected modes. This configuration flexibility allows for a detailed operational analysis under various conditions. This study conducted subsystem-level modelling before integrating all components into a simulation environment. MATLAB/Simulink version R2024b was utilized to model, simulate, and analyze the power flow in both the pico-grid and nano-grid under different operating conditions.

Suggested Citation

  • Kuan Tak Tan & Sivaneasan Bala Krishnan & Andy Yi Zhuang Chua, 2024. "Modelling and Simulation of Pico- and Nano-Grids for Renewable Energy Integration in a Campus Microgrid," Energies, MDPI, vol. 18(1), pages 1-33, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:67-:d:1554846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morstyn, Thomas & Collett, Katherine A. & Vijay, Avinash & Deakin, Matthew & Wheeler, Scot & Bhagavathy, Sivapriya M. & Fele, Filiberto & McCulloch, Malcolm D., 2020. "OPEN: An open-source platform for developing smart local energy system applications," Applied Energy, Elsevier, vol. 275(C).
    2. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    3. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    4. Duarte Kazacos Winter & Rahul Khatri & Michael Schmidt, 2021. "Decentralized Prosumer-Centric P2P Electricity Market Coordination with Grid Security," Energies, MDPI, vol. 14(15), pages 1-17, August.
    5. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    6. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    7. Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
    8. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    9. Farrell, Niall, 2021. "The increasing cost of ignoring Coase: Inefficient electricity tariffs, welfare loss and welfare-reducing technological change," Energy Economics, Elsevier, vol. 97(C).
    10. Krzysztof Bartczak & Stanisław Łobejko, 2022. "The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources," Energies, MDPI, vol. 15(16), pages 1-16, August.
    11. Chun Xia-Bauer & Florin Vondung & Stefan Thomas & Raphael Moser, 2022. "Business Model Innovations for Renewable Energy Prosumer Development in Germany," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    12. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    13. Guo, Qiaozhen & He, Qiao-Chu & Chen, Ying-Ju & Huang, Wei, 2021. "Poverty mitigation via solar panel adoption: Smart contracts and targeted subsidy design," Omega, Elsevier, vol. 102(C).
    14. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.
    16. Marco Galici & Mario Mureddu & Emilio Ghiani & Fabrizio Pilo, 2022. "Blockchain-Based Hardware-in-the-Loop Simulation of a Decentralized Controller for Local Energy Communities," Energies, MDPI, vol. 15(20), pages 1-25, October.
    17. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    18. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).
    19. Mohamed Wael Ben Khaled & Nadia Ouertani Abaoub, 2024. "Energy Sector Evolution: Perspectives on Energy Platforms and Energy Transition," Post-Print hal-04612503, HAL.
    20. Yaxin Tan & Zhiyu Xu & Weisheng Xu, 2022. "A Two-Phase Hybrid Trading of Green Certificate under Renewables Portfolio Standards in Community of Active Energy Agents," Energies, MDPI, vol. 15(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:67-:d:1554846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.