IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p101-d1556849.html
   My bibliography  Save this article

Energy Efficiency of Polish Farms Following EU Accession (2004–2021)

Author

Listed:
  • Adam Wąs

    (Institute of Economics and Finances, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787 Warsaw, Poland)

  • Julia Tsybulska

    (Department of European Integration, Institute of Rural and Agricultural Development, Polish Academy of Sciences, 00-330 Warsaw, Poland)

  • Piotr Sulewski

    (Institute of Economics and Finances, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787 Warsaw, Poland)

  • Vitaliy Krupin

    (Department of Economic Modelling, Institute of Rural and Agricultural Development, Polish Academy of Sciences, 00-330 Warsaw, Poland)

  • Grzegorz Rawa

    (Institute of Economics and Finances, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787 Warsaw, Poland)

  • Iryna Skorokhod

    (Department of International Economic Relations and Project Management, Lesya Ukrainka Volyn National University, Volia Ave. 13, 43025 Lutsk, Ukraine)

Abstract

Modern agriculture requires substantial energy inputs, a significant portion of which are derived from fossil fuels. In the interests of addressing global challenges, such as sustainable resource management and reducing greenhouse gas emissions, this study examines changes in energy efficiency within Polish agriculture following the country’s accession to the European Union. It emphasizes the impact of dynamic structural transformations on energy consumption patterns in the agricultural sector. The research, based on data from Statistics Poland and FADN (Farm Accountancy Data Network) covering the period 2004–2021, analyzes various farm types and their economic sizes. Key indicators include energy intensity in agricultural production, expressed as the ratio of energy consumption to production value, and the share of different energy carriers in total energy inputs. The results demonstrate an overall improvement in energy efficiency during the analyzed period, with energy intensity decreasing by an average of 40%. The most significant improvements were observed in large-scale farms. Additionally, there was a notable decline in the use of solid fuels, offset by increased reliance on diesel fuel and electricity. Despite these positive trends, challenges persist. Energy costs per unit of production value in Poland remain relatively high compared to other EU countries, driven by rapidly rising energy prices and the structure of Polish agriculture, which predominantly produces goods with relatively low added value. Furthermore, variations in energy consumption structures across production types highlight the importance of specialization in enhancing energy efficiency at the farm level.

Suggested Citation

  • Adam Wąs & Julia Tsybulska & Piotr Sulewski & Vitaliy Krupin & Grzegorz Rawa & Iryna Skorokhod, 2024. "Energy Efficiency of Polish Farms Following EU Accession (2004–2021)," Energies, MDPI, vol. 18(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:101-:d:1556849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muyesaier Tudi & Huada Daniel Ruan & Li Wang & Jia Lyu & Ross Sadler & Des Connell & Cordia Chu & Dung Tri Phung, 2021. "Agriculture Development, Pesticide Application and Its Impact on the Environment," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    2. Monika Balawejder & Artur Warchoł & Kalle Konttinen, 2023. "Energy Efficiency in Agricultural Production—Experience from Land Consolidation in Poland and Finland," Energies, MDPI, vol. 16(22), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludwik Wicki & Hanna Dudek & Andrzej Parzonko & Dariusz Kusz & Kaspars Naglis-Liepa, 2025. "Factors Influencing the Productivity of Direct Energy Inputs in EU Agriculture," Sustainability, MDPI, vol. 17(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Chen & Jie Zhang & Hongtao Wang & Lingyun Li & Meizhen Yin & Jie Shen & Shuo Yan & Baoyou Liu, 2024. "Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management," Agriculture, MDPI, vol. 14(7), pages 1-16, June.
    2. Jinping Li & Da Cheng & Juanjuan Huang & Jian Kang & Baohong Jin & Vojislav Novakovic & Yasong Sun, 2025. "Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
    3. Wanglin Ma & Hongyun Zheng & Amaka Nnaji, 2023. "Cooperative membership and adoption of green pest control practices: Insights from rice farmers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(3), pages 459-479, July.
    4. Carlos Nuévalos-Tello & Daniel Hernández-Torres & Santiago Sardinero-Roscales & Miriam Pajares-Guerra & Anna Chilton & Raimundo Jiménez-Ballesta, 2024. "Ecological Restoration Process of El Hito Saline Lagoon: Potential Biodiversity Gain in an Agro-Natural Environment," Land, MDPI, vol. 13(12), pages 1-21, November.
    5. Inês Costa-Pereira & Ana A. R. M. Aguiar & Fernanda Delgado & Cristina A. Costa, 2024. "A Methodological Framework for Assessing the Agroecological Performance of Farms in Portugal: Integrating TAPE and ACT Approaches," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    6. Philbert Mperejekumana & Lei Shen & Shuai Zhong & Fabien Muhirwa & Assa Nsabiyeze & Jean Marie Vianney Nsigayehe & Anathalie Nyirarwasa, 2023. "Assessing the Capacity of the Water–Energy–Food Nexus in Enhancing Sustainable Agriculture and Food Security in Burundi," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    7. Patricia Mussali-Galante & María Luisa Castrejón-Godínez & José Antonio Díaz-Soto & Ángela Patricia Vargas-Orozco & Héctor Miguel Quiroz-Medina & Efraín Tovar-Sánchez & Alexis Rodríguez, 2023. "Biobeds, a Microbial-Based Remediation System for the Effective Treatment of Pesticide Residues in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-25, June.
    8. Salvatore Privitera & Emanuele Cerruto & Giuseppe Manetto & Sebastian Lupica & David Nuyttens & Donald Dekeyser & Ingrid Zwertvaegher & Marconi Ribeiro Furtado Júnior & Beatriz Costalonga Vargas, 2024. "Comparison between Liquid Immersion, Laser Diffraction, PDPA, and Shadowgraphy in Assessing Droplet Size from Agricultural Nozzles," Agriculture, MDPI, vol. 14(7), pages 1-20, July.
    9. Shuang Zhang & Shaobo Liu & Qikang Zhong & Kai Zhu & Hongpeng Fu, 2024. "Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing," Land, MDPI, vol. 13(8), pages 1-24, August.
    10. Manoj Kaushal & Mary Atieno & Sylvanus Odjo & Frederick Baijukya & Yosef Gebrehawaryat & Carlo Fadda, 2025. "Nature-Positive Agriculture—A Way Forward Towards Resilient Agrifood Systems," Sustainability, MDPI, vol. 17(3), pages 1-25, January.
    11. Artur Warchoł & Karolina Pęzioł & Marek Baścik, 2024. "Energy-Saving Geospatial Data Storage—LiDAR Point Cloud Compression," Energies, MDPI, vol. 17(24), pages 1-28, December.
    12. Zheng, Yanan & Goodhue, Rachael E., 2022. "Intensive or Extensive Margin Effects? Growers’ Responses to the Restriction of High-Volatile Organic Compound (VOC) Pesticide Products in the San Joaquin Valley, California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322085, Agricultural and Applied Economics Association.
    13. Zahoor Ahmad Shah & Mushtaq Ahmad Dar & Eajaz Ahmad Dar & Chukwujekwu A. Obianefo & Arif Hussain Bhat & Mohammed Tauseef Ali & Mohamed El-Sharnouby & Mustafa Shukry & Hosny Kesba & Samy Sayed, 2022. "Sustainable Fruit Growing: An Analysis of Differences in Apple Productivity in the Indian State of Jammu and Kashmir," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    14. Ratana Sapbamrer & Jiraporn Chittrakul, 2022. "Determinants of Consumers’ Behavior in Reducing Pesticide Residues in Vegetables and Fruits, Northern Thailand," IJERPH, MDPI, vol. 19(20), pages 1-11, October.
    15. Bahromiddin Husenov & Siham Asaad & Hafiz Muminjanov & Larisa Garkava-Gustavsson & Eva Johansson, 2021. "Sustainable Wheat Production and Food Security of Domestic Wheat in Tajikistan: Implications of Seed Health and Protein Quality," IJERPH, MDPI, vol. 18(11), pages 1-20, May.
    16. Emilia Ludwiczak & Mariusz Nietupski & Beata Gabryś & Cezary Purwin & Bożena Kordan, 2024. "Selected Chemical Parameters of Cereal Grain Influencing the Development of Rhyzopertha dominica F," Sustainability, MDPI, vol. 16(16), pages 1-15, August.
    17. Faure, Jérôme & Mouysset, Lauriane, 2025. "Natural insurance as a green alternative for farmers? Empirical evidence for semi-natural habitats and methodological bias," Ecological Economics, Elsevier, vol. 227(C).
    18. Nisreen Hassan Akkouch & Jalal Halwani & Issam Shaarani, 2025. "Exploring Pesticide Knowledge, Practices, and Health Perceptions Among Farmers in Akkar, Lebanon," IJERPH, MDPI, vol. 22(2), pages 1-14, February.
    19. Mustapha Yakubu Madaki & Mira Lehberger & Miroslava Bavorova & Boluwatife Teniola Igbasan & Harald Kächele, 2024. "Effectiveness of pesticide stakeholders’ information on pesticide handling knowledge and behaviour of smallholder farmers in Ogun State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17185-17204, July.
    20. Muyesaier Tudi & Linsheng Yang & Li Wang & Jia Lv & Lijuan Gu & Hairong Li & Wei Peng & Qiming (Jimmy) Yu & Huada (Daniel) Ruan & Qin Li & Ross Sadler & Des Connell, 2023. "Environmental and Human Health Hazards from Chlorpyrifos, Pymetrozine and Avermectin Application in China under a Climate Change Scenario: A Comprehensive Review," Agriculture, MDPI, vol. 13(9), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:101-:d:1556849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.