IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p100-d1556906.html
   My bibliography  Save this article

Optimizing Heat Pump Control in an NZEB via Model Predictive Control and Building Simulation

Author

Listed:
  • Christian Baumann

    (Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Centre, Vorarlberg University of Applied Sciences, 6850 Dornbirn, Austria
    Josef Ressel Centre for Intelligent Thermal Energy Systems, Vorarlberg University of Applied Sciences, 6850 Dornbirn, Austria)

  • Philipp Wohlgenannt

    (Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Centre, Vorarlberg University of Applied Sciences, 6850 Dornbirn, Austria
    Josef Ressel Centre for Intelligent Thermal Energy Systems, Vorarlberg University of Applied Sciences, 6850 Dornbirn, Austria
    Faculty of Engineering and Science, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway)

  • Wolfgang Streicher

    (Unit of Energy Efficient Buildings, Department of Structural Engineering and Material Sciences, University of Innsbruck, Techniker Str. 13, 6020 Innsbruck, Austria)

  • Peter Kepplinger

    (Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Centre, Vorarlberg University of Applied Sciences, 6850 Dornbirn, Austria
    Josef Ressel Centre for Intelligent Thermal Energy Systems, Vorarlberg University of Applied Sciences, 6850 Dornbirn, Austria)

Abstract

EU regulations get stricter from 2028 on by imposing net-zero energy building (NZEB) standards on new residential buildings including on-site renewable energy integration. Heat pumps (HP) using thermal building mass, and Model Predictive Control (MPC) provide a viable solution to this problem. However, the MPC potential in NZEBs considering the impact on indoor comfort have not yet been investigated comprehensively. Therefore, we present a co-simulative approach combining MPC optimization and IDA ICE building simulation. The demand response (DR) potential of a ground-source HP and the long-term indoor comfort in an NZEB located in Vorarlberg, Austria over a one year period are investigated. Optimization is performed using Mixed-Integer Linear Programming (MILP) based on a simplified RC model. The HP in the building simulation is controlled by power signals obtained from the optimization. The investigation shows reductions in electricity costs of up to 49% for the HP and up to 5% for the building, as well as increases in PV self-consumption and the self-sufficiency ratio by up to 4% pt., respectively, in two distinct optimization scenarios. Consequently, the grid consumption decreased by up to 5%. Moreover, compared to the reference PI controller, the MPC scenarios enhanced indoor comfort by reducing room temperature fluctuations and lowering the average percentage of people dissatisfied by 1% pt., resulting in more stable indoor conditions. Especially precooling strategies mitigated overheating risks in summer and ensured indoor comfort according to EN 16798-1 class II standards.

Suggested Citation

  • Christian Baumann & Philipp Wohlgenannt & Wolfgang Streicher & Peter Kepplinger, 2024. "Optimizing Heat Pump Control in an NZEB via Model Predictive Control and Building Simulation," Energies, MDPI, vol. 18(1), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:100-:d:1556906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    2. Weeratunge, Hansani & Narsilio, Guillermo & de Hoog, Julian & Dunstall, Simon & Halgamuge, Saman, 2018. "Model predictive control for a solar assisted ground source heat pump system," Energy, Elsevier, vol. 152(C), pages 974-984.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    3. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    4. Oscar Villegas Mier & Anna Dittmann & Wiebke Herzberg & Holger Ruf & Elke Lorenz & Michael Schmidt & Rainer Gasper, 2023. "Predictive Control of a Real Residential Heating System with Short-Term Solar Power Forecast," Energies, MDPI, vol. 16(19), pages 1-19, October.
    5. Wassim Salameh & Jalal Faraj & Elias Harika & Rabih Murr & Mahmoud Khaled, 2021. "On the Optimization of Electrical Water Heaters: Modelling Simulations and Experimentation," Energies, MDPI, vol. 14(13), pages 1-12, June.
    6. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & Cabeza, Luisa F. & Payá, Jorge & Marchante-Avellaneda, Javier & de Gracia, Alvaro, 2022. "Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control," Energy, Elsevier, vol. 239(PC).
    7. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    8. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    9. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    10. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    12. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    13. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
    14. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Davide Fop & Ali Reza Yaghoubi & Alfonso Capozzoli, 2024. "Validation of a Model Predictive Control Strategy on a High Fidelity Building Emulator," Energies, MDPI, vol. 17(20), pages 1-20, October.
    17. Li, Fenglei & Chang, Zhao & Li, Xinchang & Tian, Qi, 2018. "Energy and exergy analyses of a solar-driven ejector-cascade heat pump cycle," Energy, Elsevier, vol. 165(PB), pages 419-431.
    18. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    19. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    20. Shukhobodskiy, Alexander Alexandrovich & Colantuono, Giuseppe, 2020. "RED WoLF: Combining a battery and thermal energy reservoirs as a hybrid storage system," Applied Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:100-:d:1556906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.