IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2167-d1387432.html
   My bibliography  Save this article

Reinforcement Learning for Efficient Power Systems Planning: A Review of Operational and Expansion Strategies

Author

Listed:
  • Gabriel Pesántez

    (Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil 090902, Ecuador
    Electrical Engineering Program, Faculty of Engineering and Applied Sciences, Universidad Técnica de Cotopaxi, Campus La Matriz, Latacunga 050108, Ecuador)

  • Wilian Guamán

    (Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil 090902, Ecuador
    Electrical Engineering Program, Faculty of Engineering and Applied Sciences, Universidad Técnica de Cotopaxi, Campus La Matriz, Latacunga 050108, Ecuador)

  • José Córdova

    (Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil 090902, Ecuador)

  • Miguel Torres

    (Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil 090902, Ecuador)

  • Pablo Benalcazar

    (Division of Energy Economics, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, ul. J. Wybickiego 7A, 31-261 Kraków, Poland)

Abstract

The efficient planning of electric power systems is essential to meet both the current and future energy demands. In this context, reinforcement learning (RL) has emerged as a promising tool for control problems modeled as Markov decision processes (MDPs). Recently, its application has been extended to the planning and operation of power systems. This study provides a systematic review of advances in the application of RL and deep reinforcement learning (DRL) in this field. The problems are classified into two main categories: Operation planning including optimal power flow (OPF), economic dispatch (ED), and unit commitment (UC) and expansion planning, focusing on transmission network expansion planning (TNEP) and distribution network expansion planning (DNEP). The theoretical foundations of RL and DRL are explored, followed by a detailed analysis of their implementation in each planning area. This includes the identification of learning algorithms, function approximators, action policies, agent types, performance metrics, reward functions, and pertinent case studies. Our review reveals that RL and DRL algorithms outperform conventional methods, especially in terms of efficiency in computational time. These results highlight the transformative potential of RL and DRL in addressing complex challenges within power systems.

Suggested Citation

  • Gabriel Pesántez & Wilian Guamán & José Córdova & Miguel Torres & Pablo Benalcazar, 2024. "Reinforcement Learning for Efficient Power Systems Planning: A Review of Operational and Expansion Strategies," Energies, MDPI, vol. 17(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2167-:d:1387432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lauren E. Natividad & Pablo Benalcazar, 2023. "Hybrid Renewable Energy Systems for Sustainable Rural Development: Perspectives and Challenges in Energy Systems Modeling," Energies, MDPI, vol. 16(3), pages 1-15, January.
    2. Tsianikas, Stamatis & Yousefi, Nooshin & Zhou, Jian & Rodgers, Mark D. & Coit, David, 2021. "A storage expansion planning framework using reinforcement learning and simulation-based optimization," Applied Energy, Elsevier, vol. 290(C).
    3. Stephen Frank & Steffen Rebennack, 2016. "An introduction to optimal power flow: Theory, formulation, and examples," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1172-1197, December.
    4. Yuhong Wang & Xu Zhou & Yunxiang Shi & Zongsheng Zheng & Qi Zeng & Lei Chen & Bo Xiang & Rui Huang, 2021. "Transmission Network Expansion Planning Considering Wind Power and Load Uncertainties Based on Multi-Agent DDQN," Energies, MDPI, vol. 14(19), pages 1-28, September.
    5. Jianxun Luo & Wei Zhang & Hui Wang & Wenmiao Wei & Jinpeng He, 2023. "Research on Data-Driven Optimal Scheduling of Power System," Energies, MDPI, vol. 16(6), pages 1-15, March.
    6. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    7. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    8. Wang, Xinyue & Zhong, Haiwang & Zhang, Guanglun & Ruan, Guangchun & He, Yiliu & Yu, Zekuan, 2024. "Adaptive look-ahead economic dispatch based on deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    2. Motta, Vinicius N. & Anjos, Miguel F. & Gendreau, Michel, 2024. "Survey of optimization models for power system operation and expansion planning with demand response," European Journal of Operational Research, Elsevier, vol. 312(2), pages 401-412.
    3. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    4. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    5. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    6. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    7. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    8. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    9. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    10. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    11. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.
    12. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    13. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    14. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    15. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    16. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    17. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    18. Zhang, Cong & Greenblatt, Jeffery B. & MacDougall, Pamela & Saxena, Samveg & Jayam Prabhakar, Aditya, 2020. "Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States," Applied Energy, Elsevier, vol. 270(C).
    19. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    20. Ottenburger, Sadeeb Simon & Çakmak, Hüseyin Kemal & Jakob, Wilfried & Blattmann, Andreas & Trybushnyi, Dmytro & Raskob, Wolfgang & Kühnapfel, Uwe & Hagenmeyer, Veit, 2020. "A novel optimization method for urban resilient and fair power distribution preventing critical network states," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2167-:d:1387432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.