IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2167-d1387432.html
   My bibliography  Save this article

Reinforcement Learning for Efficient Power Systems Planning: A Review of Operational and Expansion Strategies

Author

Listed:
  • Gabriel Pesántez

    (Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil 090902, Ecuador
    Electrical Engineering Program, Faculty of Engineering and Applied Sciences, Universidad Técnica de Cotopaxi, Campus La Matriz, Latacunga 050108, Ecuador)

  • Wilian Guamán

    (Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil 090902, Ecuador
    Electrical Engineering Program, Faculty of Engineering and Applied Sciences, Universidad Técnica de Cotopaxi, Campus La Matriz, Latacunga 050108, Ecuador)

  • José Córdova

    (Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil 090902, Ecuador)

  • Miguel Torres

    (Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil 090902, Ecuador)

  • Pablo Benalcazar

    (Division of Energy Economics, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, ul. J. Wybickiego 7A, 31-261 Kraków, Poland)

Abstract

The efficient planning of electric power systems is essential to meet both the current and future energy demands. In this context, reinforcement learning (RL) has emerged as a promising tool for control problems modeled as Markov decision processes (MDPs). Recently, its application has been extended to the planning and operation of power systems. This study provides a systematic review of advances in the application of RL and deep reinforcement learning (DRL) in this field. The problems are classified into two main categories: Operation planning including optimal power flow (OPF), economic dispatch (ED), and unit commitment (UC) and expansion planning, focusing on transmission network expansion planning (TNEP) and distribution network expansion planning (DNEP). The theoretical foundations of RL and DRL are explored, followed by a detailed analysis of their implementation in each planning area. This includes the identification of learning algorithms, function approximators, action policies, agent types, performance metrics, reward functions, and pertinent case studies. Our review reveals that RL and DRL algorithms outperform conventional methods, especially in terms of efficiency in computational time. These results highlight the transformative potential of RL and DRL in addressing complex challenges within power systems.

Suggested Citation

  • Gabriel Pesántez & Wilian Guamán & José Córdova & Miguel Torres & Pablo Benalcazar, 2024. "Reinforcement Learning for Efficient Power Systems Planning: A Review of Operational and Expansion Strategies," Energies, MDPI, vol. 17(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2167-:d:1387432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lauren E. Natividad & Pablo Benalcazar, 2023. "Hybrid Renewable Energy Systems for Sustainable Rural Development: Perspectives and Challenges in Energy Systems Modeling," Energies, MDPI, vol. 16(3), pages 1-15, January.
    2. Tsianikas, Stamatis & Yousefi, Nooshin & Zhou, Jian & Rodgers, Mark D. & Coit, David, 2021. "A storage expansion planning framework using reinforcement learning and simulation-based optimization," Applied Energy, Elsevier, vol. 290(C).
    3. Stephen Frank & Steffen Rebennack, 2016. "An introduction to optimal power flow: Theory, formulation, and examples," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1172-1197, December.
    4. Wang, Xinyue & Zhong, Haiwang & Zhang, Guanglun & Ruan, Guangchun & He, Yiliu & Yu, Zekuan, 2024. "Adaptive look-ahead economic dispatch based on deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    5. Yuhong Wang & Xu Zhou & Yunxiang Shi & Zongsheng Zheng & Qi Zeng & Lei Chen & Bo Xiang & Rui Huang, 2021. "Transmission Network Expansion Planning Considering Wind Power and Load Uncertainties Based on Multi-Agent DDQN," Energies, MDPI, vol. 14(19), pages 1-28, September.
    6. Jianxun Luo & Wei Zhang & Hui Wang & Wenmiao Wei & Jinpeng He, 2023. "Research on Data-Driven Optimal Scheduling of Power System," Energies, MDPI, vol. 16(6), pages 1-15, March.
    7. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    8. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    2. Motta, Vinicius N. & Anjos, Miguel F. & Gendreau, Michel, 2024. "Survey of optimization models for power system operation and expansion planning with demand response," European Journal of Operational Research, Elsevier, vol. 312(2), pages 401-412.
    3. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    4. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    5. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    6. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    7. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    10. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    11. Mohamed M. Refaat & Shady H. E. Abdel Aleem & Yousry Atia & Ziad M. Ali & Adel El-Shahat & Mahmoud M. Sayed, 2021. "A Mathematical Approach to Simultaneously Plan Generation and Transmission Expansion Based on Fault Current Limiters and Reliability Constraints," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    12. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    13. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    14. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    15. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    16. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    17. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    18. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    19. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    20. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2167-:d:1387432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.