IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1521-d1362026.html
   My bibliography  Save this article

A Case Study Using Hydrogen Fuel Cell as Range Extender for Lithium Battery Electric Vehicle

Author

Listed:
  • Shi-Tao Zhi

    (Hainan Institute of Industry, Haikou 570204, China)

  • Ya-Jie Pang

    (Hainan Institute of Industry, Haikou 570204, China)

  • Wen-Wen Wang

    (Hainan Institute of Industry, Haikou 570204, China)

  • Hai-Sheng Zhen

    (The Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

  • Zhi-Long Wei

    (The Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

Abstract

This paper presents a case study of a lithium battery and fuel cell integrated powertrain system for a renewable energy vehicle. The performance analysis includes evaluating the energy consumption of the vehicle and the efficiency of the power generation components. When driven solely by the lithium battery at average speeds of 15 km/h and 20 km/h, it was observed that speed significantly influences the travel distance of the vehicle, with higher speeds resulting in lower mileage. The energy efficiency rates were found to be 89.3% and 85.7% at speeds of 15 km/h and 20 km/h, respectively, indicating an 18.1% decrease in efficiency from low to higher speeds. When the lithium battery is solely charged by the hydrogen fuel cell, the efficiency under test conditions reaches approximately 32.5%. In the “FC + B + SC” driving mode, which combines the use of the lithium battery, fuel cell, and solar panel to power the vehicle, the travel range can be extended to 50.62 km and 42.05 km, respectively, representing an increase of over 50%, with overall efficiencies of 63.8% and 60.7%, respectively. This hybrid powertrain system exhibits rapid dynamic response, high energy and power density, and enables longer travel distances for the renewable energy vehicle.

Suggested Citation

  • Shi-Tao Zhi & Ya-Jie Pang & Wen-Wen Wang & Hai-Sheng Zhen & Zhi-Long Wei, 2024. "A Case Study Using Hydrogen Fuel Cell as Range Extender for Lithium Battery Electric Vehicle," Energies, MDPI, vol. 17(7), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1521-:d:1362026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Menglin & Yin, Long & Yan, Mei & Wu, Jingda & He, Hongwe & Jia, Chunchun, 2024. "Hierarchical intelligent energy-saving control strategy for fuel cell hybrid electric buses based on traffic flow predictions," Energy, Elsevier, vol. 304(C).
    2. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    3. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    4. Wu, Yue & Huang, Zhiwu & Li, Dongjun & Li, Heng & Peng, Jun & Stroe, Daniel & Song, Ziyou, 2024. "Optimal battery thermal management for electric vehicles with battery degradation minimization," Applied Energy, Elsevier, vol. 353(PA).
    5. Chen, Bin & Wang, Miaoben & Hu, Lin & He, Guo & Yan, Haoyang & Wen, Xinji & Du, Ronghua, 2024. "Data-driven Koopman model predictive control for hybrid energy storage system of electric vehicles under vehicle-following scenarios," Applied Energy, Elsevier, vol. 365(C).
    6. Haochen Xu & Niaona Zhang & Zonghao Li & Zichang Zhuo & Ye Zhang & Yilei Zhang & Haitao Ding, 2023. "Energy-Saving Speed Planning for Electric Vehicles Based on RHRL in Car following Scenarios," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    7. Han, Jie & Liu, Wenxue & Zheng, Yusheng & Khalatbarisoltani, Arash & Yang, Yalian & Hu, Xiaosong, 2023. "Health-conscious predictive energy management strategy with hybrid speed predictor for plug-in hybrid electric vehicles: Investigating the impact of battery electro-thermal-aging models," Applied Energy, Elsevier, vol. 352(C).
    8. Zhe Zhang & Haitao Ding & Konghui Guo & Niaona Zhang, 2022. "A Hierarchical Control Strategy for FWID-EVs Based on Multi-Agent with Consideration of Safety and Economy," Energies, MDPI, vol. 15(23), pages 1-18, December.
    9. Wilberforce, Tabbi & Anser, Afaaq & Swamy, Jangam Aishwarya & Opoku, Richard, 2023. "An investigation into hybrid energy storage system control and power distribution for hybrid electric vehicles," Energy, Elsevier, vol. 279(C).
    10. Ji, Jie & Zhou, Mengxiong & Guo, Renwei & Tang, Jiankang & Su, Jiaoyue & Huang, Hui & Sun, Na & Nazir, Muhammad Shahzad & Wang, Yaodong, 2023. "A electric power optimal scheduling study of hybrid energy storage system integrated load prediction technology considering ageing mechanism," Renewable Energy, Elsevier, vol. 215(C).
    11. Ju, Fei & Murgovski, Nikolce & Zhuang, Weichao & Hu, Xiaosong & Song, Ziyou & Wang, Liangmo, 2023. "Predictive energy management with engine switching control for hybrid electric vehicle via ADMM," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1521-:d:1362026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.