IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1383-d1356294.html
   My bibliography  Save this article

Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review

Author

Listed:
  • Zygmunt Kowalski

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, 31-261 Kraków, Poland)

  • Agnieszka Makara

    (Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland)

  • Joanna Kulczycka

    (Faculty of Management, AGH University of Science and Technology, Gramatyka 10, 30-067 Kraków, Poland)

  • Agnieszka Generowicz

    (Department of Environmental Technologies, Cracow University of Technology, 31-155 Kraków, Poland)

  • Paweł Kwaśnicki

    (Faculty of Natural and Technical Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland)

  • Józef Ciuła

    (Faculty of Engineering Sciences, State University of Applied Sciences in Nowy Sącz, 33-300 Nowy Sącz, Poland)

  • Anna Gronba-Chyła

    (Faculty of Natural and Technical Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland)

Abstract

The valorisation of sewage sludge for sustainable agricultural use and biofuel production proposes an effective and beneficial management of sewage sludge in a closed-loop cycle. The management of sewage sludge biowaste is a rising problem due to increasing waste storage expenses. In this sense, the use of circular economy principles in sewage sludge management creates opportunities to develop new technologies for processing. The biorefinery model allows the application of wasteless technologies via sewage sludge valorisation in terms of agricultural use and biofuel production, especially with the hydrothermal carbonisation method. Applying hydrothermal carbonisation in the treatment of biosolid sewage sludge has numerous benefits due to processing highly hydrated organic waste into carbon hydro char, a high-quality solid biofuel. The direct use of sewage sludge in the soil does not allow for full use of its functional properties. However, the hydrothermal carbonisation of sewage sludge results in biocarbon pellets, making it a viable approach. This work also discusses the barriers (legal, chemical, biological, and technical) and possibilities related to sewage sludge biorefining processes.

Suggested Citation

  • Zygmunt Kowalski & Agnieszka Makara & Joanna Kulczycka & Agnieszka Generowicz & Paweł Kwaśnicki & Józef Ciuła & Anna Gronba-Chyła, 2024. "Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review," Energies, MDPI, vol. 17(6), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1383-:d:1356294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
    2. Zygmunt Kowalski & Agnieszka Makara, 2022. "Sustainable Systems for the Production of District Heating Using Meat-Bone Meal as Biofuel: A Polish Case Study," Energies, MDPI, vol. 15(10), pages 1-15, May.
    3. Hana Hudcová & Jan Vymazal & Miloš Rozkošný, 2019. "Present restrictions of sewage sludge application in agriculture within the European Union," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(2), pages 104-120.
    4. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grouiez, Pascal & Debref, Romain & Vivien, Franck-Dominique & Befort, Nicolas, 2023. "The complex relationships between non-food agriculture and the sustainable bioeconomy: The French case," Ecological Economics, Elsevier, vol. 214(C).
    2. Mohajan, Haradhan, 2021. "Cradle to Cradle is a Sustainable Economic Policy for the Better Future," MPRA Paper 111334, University Library of Munich, Germany, revised 10 Oct 2021.
    3. Bruno Michel Roman Pais Seles & Janaina Mascarenhas & Ana Beatriz Lopes de Sousa Jabbour & Adriana Hoffman Trevisan, 2022. "Smoothing the circular economy transition: The role of resources and capabilities enablers," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1814-1837, May.
    4. Davide Bruno & Marinella Ferrara & Felice D’Alessandro & Alberto Mandelli, 2022. "The Role of Design in the CE Transition of the Furniture Industry—The Case of the Italian Company Cassina," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    5. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
    6. Francesca Gennari, 2023. "The transition towards a circular economy. A framework for SMEs," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(4), pages 1423-1457, December.
    7. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.
    8. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    9. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability, Springer, vol. 1(1), pages 231-242, June.
    10. Łukasz Brzeziński & Adam Kolinski, 2024. "Challenges of the Green Transformation of Transport in Poland," Sustainability, MDPI, vol. 16(8), pages 1-34, April.
    11. Baoting Peng & Xin Shen, 2024. "Does Environmental Regulation Affect Circular Economy Performance? Evidence from China," Sustainability, MDPI, vol. 16(11), pages 1-19, May.
    12. Nikos Chatzistamoulou & Phoebe Koundouri, 2020. "The Economics of Sustainable Development," DEOS Working Papers 2005, Athens University of Economics and Business.
    13. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    14. Yu Hao & Yingting Wang & Qiuwei Wu & Shiwei Sun & Weilu Wang & Menglin Cui, 2020. "What affects residents' participation in the circular economy for sustainable development? Evidence from China," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1251-1268, September.
    15. Jose García‐Quevedo & Elisenda Jové‐Llopis & Ester Martínez‐Ros, 2020. "Barriers to the circular economy in European small and medium‐sized firms," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2450-2464, September.
    16. Kirchherr, Julian & Piscicelli, Laura & Bour, Ruben & Kostense-Smit, Erica & Muller, Jennifer & Huibrechtse-Truijens, Anne & Hekkert, Marko, 2018. "Barriers to the Circular Economy: Evidence From the European Union (EU)," Ecological Economics, Elsevier, vol. 150(C), pages 264-272.
    17. Nuri Cihan Kayaçetin & Chiara Piccardo & Alexis Versele, 2022. "Social Impact Assessment of Circular Construction: Case of Living Lab Ghent," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    18. Anca C. Farcas & Charis M. Galanakis & Carmen Socaciu & Oana L. Pop & Dorin Tibulca & Adriana Paucean & Mirela A. Jimborean & Melinda Fogarasi & Liana C. Salanta & Maria Tofana & Sonia A. Socaci, 2020. "Food Security during the Pandemic and the Importance of the Bioeconomy in the New Era," Sustainability, MDPI, vol. 13(1), pages 1-11, December.
    19. Graziela Darla Araujo Galvão & Steve Evans & Paulo Sergio Scoleze Ferrer & Marly Monteiro de Carvalho, 2022. "Circular business model: Breaking down barriers towards sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1504-1524, May.
    20. Arezoo Ghazanfari, 2023. "An Analysis of Circular Economy Literature at the Macro Level, with a Particular Focus on Energy Markets," Energies, MDPI, vol. 16(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1383-:d:1356294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.