IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1372-d1355971.html
   My bibliography  Save this article

Partial Separation of Carbonated Material to Improve the Efficiency of Calcium Looping for the Thermochemical Storage of Solar Energy

Author

Listed:
  • Sara Pascual

    (Departamento de Ingeniería Mecánica, Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, C/María de Luna s/n, 50018 Zaragoza, Spain)

  • Claudio Tregambi

    (Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy
    Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80125 Napoli, Italy)

  • Francesca Di Lauro

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy
    Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli, Italy)

  • Roberto Solimene

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80125 Napoli, Italy)

  • Piero Salatino

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy)

  • Fabio Montagnaro

    (Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli, Italy)

  • Luis M. Romeo

    (Departamento de Ingeniería Mecánica, Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, C/María de Luna s/n, 50018 Zaragoza, Spain)

  • Pilar Lisbona

    (Departamento de Ingeniería Mecánica, Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, C/María de Luna s/n, 50018 Zaragoza, Spain)

Abstract

Concentrating solar power (CSP) technology with thermal energy storage (TES) could contribute to achieving a net zero emissions scenario by 2050. Calcium looping (CaL) is one of the potential TES processes for the future generation of CSP plants coupled with highly efficient power cycles. Research on CaL as a system for thermochemical energy storage (TCES) has focused on efficiency enhancement based on hybridization with other renewable technologies. This work proposes a novel solid management system to improve the efficiency of a CaL TCES system. The inclusion of a solid–solid separation unit after the carbonation step could lead to energy and size savings. The role of segregation between carbonated and calcined material on plant requirements is assessed, given the experimental evidence on the potential classification between more and less carbonated particles. The results show lower energy (up to 12%) and size (up to 76%) demands when the circulation of less carbonated material through the CaL TCES system diminishes. Moreover, under a classification effectiveness of 100%, the retrieval energy could increase by 32%, and the stored energy is enhanced by five times. The present work can be a proper tool to set the design and size of a CaL TCES system with a partial separation of the carbonated material.

Suggested Citation

  • Sara Pascual & Claudio Tregambi & Francesca Di Lauro & Roberto Solimene & Piero Salatino & Fabio Montagnaro & Luis M. Romeo & Pilar Lisbona, 2024. "Partial Separation of Carbonated Material to Improve the Efficiency of Calcium Looping for the Thermochemical Storage of Solar Energy," Energies, MDPI, vol. 17(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1372-:d:1355971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pascual, S. & Lisbona, P. & Bailera, M. & Romeo, L.M., 2021. "Design and operational performance maps of calcium looping thermochemical energy storage for concentrating solar power plants," Energy, Elsevier, vol. 220(C).
    2. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    3. Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
    4. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    5. Kelly Atkinson & Robin Hughes & Arturo Macchi, 2023. "Application of the Calcium Looping Process for Thermochemical Storage of Variable Energy," Energies, MDPI, vol. 16(7), pages 1-19, April.
    6. Tesio, U. & Guelpa, E. & Verda, V., 2022. "Comparison of sCO2 and He Brayton cycles integration in a Calcium-Looping for Concentrated Solar Power," Energy, Elsevier, vol. 247(C).
    7. Francesca Di Lauro & Claudio Tregambi & Fabio Montagnaro & Laura Molignano & Piero Salatino & Roberto Solimene, 2023. "Influence of Fluidised Bed Inventory on the Performance of Limestone Sorbent in Calcium Looping for Thermochemical Energy Storage," Energies, MDPI, vol. 16(19), pages 1-19, October.
    8. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisbona, Pilar & Bailera, Manuel & Hills, Thomas & Sceats, Mark & Díez, Luis I. & Romeo, Luis M., 2020. "Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage," Renewable Energy, Elsevier, vol. 156(C), pages 1019-1027.
    2. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
    3. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    4. Lu, Yupeng & Xuan, Yimin & Teng, Liang & Liu, Jingrui & Wang, Busheng, 2024. "A cascaded thermochemical energy storage system enabling performance enhancement of concentrated solar power plants," Energy, Elsevier, vol. 288(C).
    5. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    6. Sara Pascual & Pilar Lisbona & Luis M. Romeo, 2022. "Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects," Energies, MDPI, vol. 15(22), pages 1-32, November.
    7. Evgenios Karasavvas & Athanasios Scaltsoyiannes & Andy Antzaras & Kyriakos Fotiadis & Kyriakos Panopoulos & Angeliki Lemonidou & Spyros Voutetakis & Simira Papadopoulou, 2020. "One-Dimensional Heterogeneous Reaction Model of a Drop-Tube Carbonator Reactor for Thermochemical Energy Storage Applications," Energies, MDPI, vol. 13(22), pages 1-24, November.
    8. Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Tesio, U. & Guelpa, E. & Verda, V., 2022. "Comparison of sCO2 and He Brayton cycles integration in a Calcium-Looping for Concentrated Solar Power," Energy, Elsevier, vol. 247(C).
    11. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    12. Karasavvas, Evgenios & Panopoulos, Kyriakos D. & Papadopoulou, Simira & Voutetakis, Spyros, 2020. "Energy and exergy analysis of the integration of concentrated solar power with calcium looping for power production and thermochemical energy storage," Renewable Energy, Elsevier, vol. 154(C), pages 743-753.
    13. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Francesca Di Lauro & Claudio Tregambi & Fabio Montagnaro & Laura Molignano & Piero Salatino & Roberto Solimene, 2023. "Influence of Fluidised Bed Inventory on the Performance of Limestone Sorbent in Calcium Looping for Thermochemical Energy Storage," Energies, MDPI, vol. 16(19), pages 1-19, October.
    15. Ortiz, C. & Romano, M.C. & Valverde, J.M. & Binotti, M. & Chacartegui, R., 2018. "Process integration of Calcium-Looping thermochemical energy storage system in concentrating solar power plants," Energy, Elsevier, vol. 155(C), pages 535-551.
    16. Ortiz, C. & García-Luna, S. & Carro, A. & Carvajal, E. & Chacartegui, R., 2024. "Techno-economic analysis of a modular thermochemical battery for electricity storage based on calcium-looping," Applied Energy, Elsevier, vol. 367(C).
    17. Sánchez Jiménez, Pedro E. & Perejón, Antonio & Benítez Guerrero, Mónica & Valverde, José M. & Ortiz, Carlos & Pérez Maqueda, Luis A., 2019. "High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 235(C), pages 543-552.
    18. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
    20. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1372-:d:1355971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.