IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1359-d1355521.html
   My bibliography  Save this article

Research on Energy Hierarchical Management and Optimal Control of Compound Power Electric Vehicle

Author

Listed:
  • Zhiwen Zhang

    (School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China
    Hebei Key Laboratory of Specialized Transportation Equipment, Qinhuangdao 066000, China)

  • Jie Tang

    (School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China)

  • Jiyuan Zhang

    (School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China)

  • Tianci Zhang

    (School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China
    Hebei Key Laboratory of Specialized Transportation Equipment, Qinhuangdao 066000, China)

Abstract

In response to the challenges posed by the low energy utilization of single-power pure electric vehicles and the limited lifespan of power batteries, this study focuses on the development of a compound power system. This study constructs a composite power system, analyzes the coupling characteristics of multiple systems, and investigates the energy management and optimal control mechanisms. Firstly, a power transmission scheme is designed for a hybrid electric vehicle. Then, a multi-state model is established to assess the electric vehicle’s performance under complex working conditions and explore how these conditions impact system coupling. Next, load power is redistributed using the Haar wavelet theory. The super capacitor is employed to stabilize chaotic and transient components in the required power, with low-frequency components serving as input variables for the controller. Further, power distribution is determined through the application of fuzzy logic theory. Input parameters include the system’s power requirements, power battery status, and super capacitor state of charge. The result is the output of a composite power supply distribution factor. To fully exploit the composite power supply’s potential and optimize the overall system performance, a global optimization control strategy using the dynamic programming algorithm is explored. The optimization objective is to minimize power loss within the composite power system, and the optimal control is calculated through interpolation using the interp function. Finally, a comparative simulation experiment is conducted under UDDS cycle conditions. The results show that the composite power system improved the battery discharge efficiency and reduced the number of discharge cycles and discharge current of the power battery. Under the cyclic working condition of 1369 s, the state of charge of the power battery in the hybrid power system decreases from 0.9 to 0.69, representing a 12.5% increase compared to the single power system. The peak current of the power battery in the hybrid power system decreases by approximately 20 A compared with that in the single power system. Based on dynamic programming optimization, the state of charge of the power battery decreases from 0.9 to 0.724. Compared with that of the single power system, the power consumption of the proposed system increases by 25%, that of the hybrid power fuzzy control system increases by 14.2%, and that of the vehicle decreases by 14.7% after dynamic programming optimization. The multimode energy shunt relationship is solved through efficient and reasonable energy management and optimization strategies. The performance and advantages of the composite energy storage system are fully utilized. This approach provides a new idea for the energy storage scheme of new energy vehicles.

Suggested Citation

  • Zhiwen Zhang & Jie Tang & Jiyuan Zhang & Tianci Zhang, 2024. "Research on Energy Hierarchical Management and Optimal Control of Compound Power Electric Vehicle," Energies, MDPI, vol. 17(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1359-:d:1355521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamila Snoussi & Seifeddine Ben Elghali & Mohamed Benbouzid & Mohamed Faouzi Mimouni, 2018. "Auto-Adaptive Filtering-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-20, August.
    2. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Sheng Zhang & Xiangtao Zhuan, 2019. "Study on Adaptive Cruise Control Strategy for Battery Electric Vehicle," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-14, December.
    4. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    5. Khoudir Kakouche & Adel Oubelaid & Smail Mezani & Djamila Rekioua & Toufik Rekioua, 2023. "Different Control Techniques of Permanent Magnet Synchronous Motor with Fuzzy Logic for Electric Vehicles: Analysis, Modelling, and Comparison," Energies, MDPI, vol. 16(7), pages 1-28, March.
    6. Carlo Corinaldesi & Georg Lettner & Daniel Schwabeneder & Amela Ajanovic & Hans Auer, 2020. "Impact of Different Charging Strategies for Electric Vehicles in an Austrian Office Site," Energies, MDPI, vol. 13(22), pages 1-17, November.
    7. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    8. Zhang, Zhen & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Yang, Jian & Jia, Qingxiao, 2023. "Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle," Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Montaleza & Paul Arévalo & Jimmy Gallegos & Francisco Jurado, 2024. "Enhancing Energy Management Strategies for Extended-Range Electric Vehicles through Deep Q-Learning and Continuous State Representation," Energies, MDPI, vol. 17(2), pages 1-21, January.
    2. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
    3. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    6. Li, Jie & Wu, Xiaodong & Xu, Min & Liu, Yonggang, 2022. "Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections," Energy, Elsevier, vol. 251(C).
    7. Zhang, Zhen & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Yang, Jian & Jia, Qingxiao, 2023. "Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle," Energy, Elsevier, vol. 269(C).
    8. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    9. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    10. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    11. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    12. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    13. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    14. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    15. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    16. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    17. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    18. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    19. Yang, Ningkang & Han, Lijin & Bo, Lin & Liu, Baoshuai & Chen, Xiuqi & Liu, Hui & Xiang, Changle, 2023. "Real-time adaptive energy management for off-road hybrid electric vehicles based on decision-time planning," Energy, Elsevier, vol. 282(C).
    20. Subhojit Dawn & Gummadi Srinivasa Rao & M. L. N. Vital & K. Dhananjay Rao & Faisal Alsaif & Mohammed H. Alsharif, 2023. "Profit Extension of a Wind-Integrated Competitive Power System by Vehicle-to-Grid Integration and UPFC Placement," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1359-:d:1355521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.