IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1021-d1343470.html
   My bibliography  Save this article

Development of Dual Intake Port Technology in ORC-Based Power Unit Driven by Solar-Assisted Reservoir

Author

Listed:
  • Fabio Fatigati

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, Italy)

  • Roberto Cipollone

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, Italy)

Abstract

The ORC-based micro-cogeneration systems exploiting a solar source to generate electricity and domestic hot water (DHW) simultaneously are a promising solution to reduce CO 2 emissions in the residential sector. In recent years, a huge amount of attention was focused on the development of a technological solution allowing improved performance of solar ORC-based systems frequently working under off-design conditions due to the intermittence of the solar source availability and to the variability in domestic hot water demand. The optimization efforts are focused on the improvement of component technology and plant architecture. The expander is retained as the key component of such micro-cogeneration units. Generally, volumetric machines are adopted thanks to their better capability to deal with severe off-design conditions. Among the volumetric expanders, scroll machines are one of the best candidates thanks to their reliability and to their flexibility in managing two-phase working fluid. Their good efficiency adds further interest to place them among the best candidate machines to be considered. Nevertheless, similarly to other volumetric expanders, an additional research effort is needed toward efficiency improvement. The fixed built-in volume ratio, in fact, could produce an unsteady under- or over-expansion during vane filling and emptying, mainly when the operating conditions depart from the designed ones. To overcome this phenomenon, a dual intake port (DIP) technology was also introduced for the scroll expander. Such technology allows widening the angular extension of the intake phase, thus adapting the ratio between the intake and exhaust volume (so called built-in volume ratio) to the operating condition. Moreover, DIP technology allows increasing the permeability of the machine, ensuring a resulting higher mass flow rate for a given pressure difference at the expander side. On the other hand, for a given mass flow rate, the expander intake pressure diminishes with a positive benefit on scroll efficiency. DIP benefits were already proven experimentally and theoretically in previous works by the authors for Sliding Rotary Vane Expanders (SVRE). In the present paper, the impact of the DIP technology was assessed in a solar-assisted ORC-based micro-cogeneration system operating with scroll expanders and being characterized by reduced power (hundreds of W). It was found that the DIP Scroll allows elaboration of a 32% higher mass flow rate for a given pressure difference between intake and expander sides for the application at hand. This leads to an average power increase of 10% and to an improvement of up to 5% of the expander mechanical efficiency. Such results are particularly interesting for micro-cogeneration ORC-based units that are solar-assisted. Indeed, the high variability of hot source and DHW demand makes the operation of the DIP expander at a wide range of operating conditions. The experimental activity conducted confirms the suitability of the DIP expander to exploit as much as possible the thermal power available from a hot source even when at variable temperatures during operation.

Suggested Citation

  • Fabio Fatigati & Roberto Cipollone, 2024. "Development of Dual Intake Port Technology in ORC-Based Power Unit Driven by Solar-Assisted Reservoir," Energies, MDPI, vol. 17(5), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1021-:d:1343470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dumont, Olivier & Parthoens, Antoine & Dickes, Rémi & Lemort, Vincent, 2018. "Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system," Energy, Elsevier, vol. 165(PA), pages 1119-1127.
    2. Aryanfar, Yashar & Mohtaram, Soheil & García Alcaraz, Jorge Luis & Sun, HongGuang, 2023. "Energy and exergy assessment and a competitive study of a two-stage ORC for recovering SFGC waste heat and LNG cold energy," Energy, Elsevier, vol. 264(C).
    3. Song, Jian & Wang, Yaxiong & Wang, Kai & Wang, Jiangfeng & Markides, Christos N., 2021. "Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations," Renewable Energy, Elsevier, vol. 174(C), pages 1020-1035.
    4. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Badr, O. & Naik, S. & O'Callaghan, P.W. & Probert, S.D., 1991. "Expansion machine for a low power-output steam Rankine-cycle engine," Applied Energy, Elsevier, vol. 39(2), pages 93-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    2. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    3. Mohamed Toub & Chethan R. Reddy & Rush D. Robinett & Mahdi Shahbakhti, 2021. "Integration and Optimal Control of MicroCSP with Building HVAC Systems: Review and Future Directions," Energies, MDPI, vol. 14(3), pages 1-41, January.
    4. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    5. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    6. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
    7. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    8. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    9. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    11. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    12. Xie, Yingchun & Nie, Yutai & Li, Tailu & Zhang, Yao & Wang, Jingyi, 2023. "Flash evaporation strategy of organic Rankine cycle for geothermal power performance enhancement: A case study," Renewable Energy, Elsevier, vol. 212(C), pages 57-69.
    13. Antonelli, Marco & Martorano, Luigi, 2012. "A study on the rotary steam engine for distributed generation in small size power plants," Applied Energy, Elsevier, vol. 97(C), pages 642-647.
    14. Wang, Shukun & Li, Ke & Yu, Wei & Liu, Chao & Guan, Zhengjun, 2024. "Effects of non-condensable gas on thermodynamic performance of transcritical organic Rankine cycle," Energy, Elsevier, vol. 292(C).
    15. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    16. Fatemeh Parnian Gharamaleki & Shayan Sharafi Laleh & Nima Ghasemzadeh & Saeed Soltani & Marc A. Rosen, 2024. "Optimization of a Biomass-Based Power and Fresh Water-Generation System by Machine Learning Using Thermoeconomic Assessment," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    17. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    18. Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
    19. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    20. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1021-:d:1343470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.