IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1020-d1343316.html
   My bibliography  Save this article

Impact of the Regulation Strategy on the Transient Behavior of a Brayton Heat Pump

Author

Listed:
  • Matteo Pettinari

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Guido Francesco Frate

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • A. Phong Tran

    (Institute of Low-Carbon Industrial Processes, German Aerospace Center (DLR), 03046 Cottbus, Germany)

  • Johannes Oehler

    (Institute of Low-Carbon Industrial Processes, German Aerospace Center (DLR), 03046 Cottbus, Germany)

  • Panagiotis Stathopoulos

    (Institute of Low-Carbon Industrial Processes, German Aerospace Center (DLR), 03046 Cottbus, Germany)

  • Konstantinos Kyprianidis

    (Department of Sustainable Energy Systems, School of Business, Society and Engineering, Mälardalen University, 72123 Västerås, Sweden)

  • Lorenzo Ferrari

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

Abstract

High-temperature heat pumps are a key technology for enabling the complete integration of renewables into the power grid. Although these systems may come with several variants, Brayton heat pumps are gaining more and more interest because of the higher heat sink temperatures and the potential to leverage already existing components in the industry. Because these systems utilize renewable electricity to supply high-temperature heat, they are particularly suited for industry or energy storage applications, thus prompting the development of various demonstration plants to evaluate their performance and flexibility. Adapting to varying load conditions and swiftly responding to load adjustments represent crucial aspects for advancing such systems. In this context, this study delves into assessing the transient capabilities of Brayton heat pumps during thermal load management. A transient model of an emerging prototype is presented, comprising thermal and volume dynamics of the components. Furthermore, two reference scenarios are examined to assess the transient performance of the system, namely a thermal load alteration due to an abrupt change in the desired heat sink temperature and, secondly, to a sudden variation in the sink mass flow rate. Finally, two control methodologies—motor/compressor speed variation and fluid inventory control—are analyzed in the latter scenario, and a comparative analysis of their effectiveness is discussed. Results indicate that varying the compressor speed allows for a response time in the 8–20 min range for heat sink temperature regulation (first scenario). However, the regulation time is conditioned by the maximum thermal stress sustained by the heat exchangers. In the latter scenario, regulating the compressor speed shows a faster response time than the inventory control (2–5 min vs. 15 min). However, the inventory approach provides higher COPs in part-load conditions and better stability during the transient phase.

Suggested Citation

  • Matteo Pettinari & Guido Francesco Frate & A. Phong Tran & Johannes Oehler & Panagiotis Stathopoulos & Konstantinos Kyprianidis & Lorenzo Ferrari, 2024. "Impact of the Regulation Strategy on the Transient Behavior of a Brayton Heat Pump," Energies, MDPI, vol. 17(5), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1020-:d:1343316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Nagovnak & Maedeh Rahnama Mobarakeh & Christian Diendorfer & Gregor Thenius & Hans Böhm & Thomas Kienberger, 2024. "Cost-Driven Assessment of Technologies’ Potential to Reach Climate Neutrality in Energy-Intensive Industries," Energies, MDPI, vol. 17(5), pages 1-34, February.
    2. Mohammadnia, Ali & Iov, Florin & Rasmussen, Morten Karstoft & Nielsen, Mads Pagh, 2024. "Feasibility assessment of next-generation smart district heating networks by intelligent energy management strategies," Energy, Elsevier, vol. 296(C).
    3. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Liu, Hua & Zhang, Zhiping & Wu, Yongqiang & Yue, Qingxue & Zhang, Ying, 2024. "Film condensation experiments of R1233zd(E) over horizontal tubes and high-temperature condensation predictions for high-temperature heat pump," Energy, Elsevier, vol. 300(C).
    4. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    5. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    6. Wu, Di & Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Sun, Yan, 2024. "Experimental investigation and industrial application of a cascade air-source high temperature heat pump," Renewable Energy, Elsevier, vol. 232(C).
    7. Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
    8. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    9. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    10. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    13. Hao, Yinping & He, Qing & Du, Dongmei, 2020. "A trans-critical carbon dioxide energy storage system with heat pump to recover stored heat of compression," Renewable Energy, Elsevier, vol. 152(C), pages 1099-1108.
    14. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Sergio Bobbo & Giulia Lombardo & Davide Menegazzo & Laura Vallese & Laura Fedele, 2024. "A Technological Update on Heat Pumps for Industrial Applications," Energies, MDPI, vol. 17(19), pages 1-55, October.
    16. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    17. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Oliver Gregor Gorbach & Noha Saad Hussein & Jessica Thomsen, 2021. "Impact of Internal Carbon Prices on the Energy System of an Organisation’s Facilities in Germany, Japan and the United Kingdom Compared to Potential External Carbon Prices," Energies, MDPI, vol. 14(14), pages 1-41, July.
    19. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    20. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1020-:d:1343316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.