IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1000-d1342698.html
   My bibliography  Save this article

Simulation of the Multi-Wake Evolution of Two Sandia National Labs/National Rotor Testbed Turbines Operating in a Tandem Layout

Author

Listed:
  • Apurva Baruah

    (Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA)

  • Fernando Ponta

    (Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA)

  • Alayna Farrell

    (Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA)

Abstract

The future of wind power systems deployment is in the form of wind farms comprised of scores of such large turbines, most likely at offshore locations. Individual turbines have grown in span from a few tens of meters to today’s large turbines with rotor diameters that dwarf even the largest commercial aircraft. These massive dynamical systems present unique challenges at scales unparalleled in prior applications of wind science research. Fundamental to this effort is the understanding of the wind turbine wake and its evolution. Furthermore, the optimization of the entire wind farm depends on the evolution of the wakes of different turbines and their interactions within the wind farm. In this article, we use the capabilities of the Common ODE Framework (CODEF) model for the analysis of the effects of wake–rotor and wake-to-wake interactions between two turbines situated in a tandem layout fully and partially aligned with the incoming wind. These experiments were conducted in the context of a research project supported by the National Rotor Testbed (NRT) program of Sandia National Labs (SNL). Results are presented for a layout which emulates the turbine interspace and relative turbine emplacement found at SNL’s Scaled Wind Technologies Facility (SWiFT), located in Lubbock, Texas. The evolution of the twin-wake interaction generates a very rich series of secondary transitions in the vortex structure of the combined wake. These ultimately affect the wake’s axial velocity patterns, altering the position, number, intensity, and shape of localized velocity-deficit zones in the wake’s cross-section. This complex distribution of axial velocity patterns has the capacity to substantially affect the power output, peak loads, fatigue damage, and aeroelastic stability of turbines located in subsequent rows downstream on the farm.

Suggested Citation

  • Apurva Baruah & Fernando Ponta & Alayna Farrell, 2024. "Simulation of the Multi-Wake Evolution of Two Sandia National Labs/National Rotor Testbed Turbines Operating in a Tandem Layout," Energies, MDPI, vol. 17(5), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1000-:d:1342698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ponta, Fernando L. & Jacovkis, Pablo M., 2001. "A vortex model for Darrieus turbine using finite element techniques," Renewable Energy, Elsevier, vol. 24(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Jung, 2024. "Recent Development and Future Perspective of Wind Power Generation," Energies, MDPI, vol. 17(21), pages 1-5, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    2. Goude, Anders & Ågren, Olov, 2014. "Simulations of a vertical axis turbine in a channel," Renewable Energy, Elsevier, vol. 63(C), pages 477-485.
    3. Li, Ye & Calisal, Sander M., 2010. "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 35(10), pages 2325-2334.
    4. Maître, T. & Amet, E. & Pellone, C., 2013. "Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments," Renewable Energy, Elsevier, vol. 51(C), pages 497-512.
    5. Alayna Farrell & Fernando Ponta & Apurva Baruah, 2024. "Analyzing the Effects of Atmospheric Turbulent Fluctuations on the Wake Structure of Wind Turbines and Their Blade Vibrational Dynamics," Energies, MDPI, vol. 17(9), pages 1-29, April.
    6. Saeidi, Davood & Sedaghat, Ahmad & Alamdari, Pourya & Alemrajabi, Ali Akbar, 2013. "Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines," Applied Energy, Elsevier, vol. 101(C), pages 765-775.
    7. Zanette, J. & Imbault, D. & Tourabi, A., 2010. "A design methodology for cross flow water turbines," Renewable Energy, Elsevier, vol. 35(5), pages 997-1009.
    8. Borg, Michael & Shires, Andrew & Collu, Maurizio, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1214-1225.
    9. Malipeddi, A.R. & Chatterjee, D., 2012. "Influence of duct geometry on the performance of Darrieus hydroturbine," Renewable Energy, Elsevier, vol. 43(C), pages 292-300.
    10. Ponta, Fernando L. & Otero, Alejandro D. & Lago, Lucas I. & Rajan, Anurag, 2016. "Effects of rotor deformation in wind-turbine performance: The Dynamic Rotor Deformation Blade Element Momentum model (DRD–BEM)," Renewable Energy, Elsevier, vol. 92(C), pages 157-170.
    11. Antheaume, Sylvain & Maître, Thierry & Achard, Jean-Luc, 2008. "Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions," Renewable Energy, Elsevier, vol. 33(10), pages 2186-2198.
    12. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1000-:d:1342698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.