An Autonomous Distributed Coordination Strategy for Sustainable Consumption in a Microgrid Based on a Bio-Inspired Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
- Eric Bonabeau & Guy Theraulaz & Jean-Louis Deneubourg, 1998. "Fixed Response Thresholds and the Regulation of Division of Labor in Insect Societies," Working Papers 98-01-009, Santa Fe Institute.
- Kofinas, P. & Dounis, A.I. & Vouros, G.A., 2018. "Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids," Applied Energy, Elsevier, vol. 219(C), pages 53-67.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qiu, Dawei & Ye, Yujian & Papadaskalopoulos, Dimitrios & Strbac, Goran, 2021. "Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach," Applied Energy, Elsevier, vol. 292(C).
- Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
- Lin, Haiyang & Liu, Yiling & Sun, Qie & Xiong, Rui & Li, Hailong & Wennersten, Ronald, 2018. "The impact of electric vehicle penetration and charging patterns on the management of energy hub – A multi-agent system simulation," Applied Energy, Elsevier, vol. 230(C), pages 189-206.
- Taheri Tehrani, Mohammad & Afshin Hemmatyar, Ali Mohammad, 2019. "Welfare-aware strategic demand control in an intelligent market-based framework: Move towards sustainable smart grid," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
- Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
- Johannes Dahlke & Kristina Bogner & Matthias Mueller & Thomas Berger & Andreas Pyka & Bernd Ebersberger, 2020. "Is the Juice Worth the Squeeze? Machine Learning (ML) In and For Agent-Based Modelling (ABM)," Papers 2003.11985, arXiv.org.
- Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
- Maria-del-Mar Bibiloni-Femenias & José Guerrero & Juan-José Miñana & Oscar Valero, 2021. "Indistinguishability Operators via Yager t -norms and Their Applications to Swarm Multi-Agent Task Allocation," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
- Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
- Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
- Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
- Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
- Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Jicheng Liu & Fangqiu Xu & Shuaishuai Lin & Hua Cai & Suli Yan, 2018. "A Multi-Agent-Based Optimization Model for Microgrid Operation Using Dynamic Guiding Chaotic Search Particle Swarm Optimization," Energies, MDPI, vol. 11(12), pages 1-22, November.
- Ji-Won Lee & Mun-Kyeom Kim & Hyung-Joon Kim, 2021. "A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy," Energies, MDPI, vol. 14(3), pages 1-21, January.
- Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
- Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
- Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
More about this item
Keywords
emergent control; energy management systems; distributed control systems; response threshold model; smart grid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:757-:d:1333790. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.