IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p704-d1331373.html
   My bibliography  Save this article

Research on Excitation Estimation for Ocean Wave Energy Generators Based on Extended Kalman Filtering

Author

Listed:
  • Yuchen Zhang

    (Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
    School of Mechanical Engineering, Shandong University, Jinan 250061, China)

  • Zhenquan Zhang

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

  • Jun Wang

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

  • Jian Qin

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

  • Shuting Huang

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

  • Gang Xue

    (Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
    School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

  • Yanjun Liu

    (Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
    School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

Abstract

Wave energy generation methods have significant energy costs. The implementation of sophisticated control techniques in wave energy generators can lower the cost of power generation by optimizing the energy recovered from wave energy converters (WECs). To determine control inputs, most control systems rely on knowledge of the wave excitation force, including information on past, present, and future excitation forces. For the excitation of WEC devices, wave excitation force can only be inferred and predicted because it is an unmeasurable quantity. One of the more widely used observers in wave excitation estimates at the moment is the Kalman filter, but its use is primarily restricted to linear Kalman filtering. The mooring system is an integral component of floating wave energy producers. The mooring force of the device is actually nonlinear; however, the majority of current studies on excitation estimates for wave energy producers based on Kalman filter methods employ an ideal motion model based on the linearization of the mooring force. This paper, in an attempt to make things more realistic, creates a WEC system with highly nonlinear mooring forces, suggests a way to build a wave excitation force estimator for a nonlinear WEC system using the extended Kalman filtering method, and assesses the impact of various factors, such as measurement noise, random phase, and the number of equal-energy methods dividing the frequency, on the accuracy of the wave excitation force estimate.

Suggested Citation

  • Yuchen Zhang & Zhenquan Zhang & Jun Wang & Jian Qin & Shuting Huang & Gang Xue & Yanjun Liu, 2024. "Research on Excitation Estimation for Ocean Wave Energy Generators Based on Extended Kalman Filtering," Energies, MDPI, vol. 17(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:704-:d:1331373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhenquan & Qin, Jian & Wang, Dengshuai & Wang, Wei & Liu, Yanjun & Xue, Gang, 2023. "Research on wave excitation estimators for arrays of wave energy converters," Energy, Elsevier, vol. 264(C).
    2. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    3. Ali, Mumtaz & Prasad, Ramendra, 2019. "Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 281-295.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Zhang, Zhenquan & Qin, Jian & Zhang, Yuchen & Huang, Shuting & Liu, Yanjun & Xue, Gang, 2023. "Cooperative model predictive control for Wave Energy Converter arrays," Renewable Energy, Elsevier, vol. 219(P1).
    4. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    6. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
    8. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    9. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    10. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    11. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    12. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    13. Pau Mercadé Ruiz & Francesco Ferri & Jens Peter Kofoed, 2017. "Experimental Validation of a Wave Energy Converter Array Hydrodynamics Tool," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    14. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    15. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    16. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    17. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    18. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
    19. García-Díaz, Manuel & Pereiras, Bruno & Miguel-González, Celia & Rodríguez, Laudino & Fernández-Oro, Jesús, 2021. "Design of a new turbine for OWC wave energy converters: The DDT concept," Renewable Energy, Elsevier, vol. 169(C), pages 404-413.
    20. Papini, Guglielmo & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Fault diagnosis and fault-tolerant control in wave energy: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:704-:d:1331373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.