IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11310-d655371.html
   My bibliography  Save this article

Numerical Study on Natural Ventilation Characteristics of a Partial-Cylinder Opening for One-Sided-Windcatcher of Variable Air-Feeding Orientations in Taif, Saudi Arabia

Author

Listed:
  • Ashraf Balabel

    (Department of Mechanical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Mamdooh Alwetaishi

    (Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Wageeh A. El-Askary

    (Alexandria Higher Institute of Engineering and Technology (AIET), Alexandria 21311, Egypt
    Department of Mechanical Power Engineering, Faculty of Engineering, Menoufia University, Shebin El Kom 32511, Egypt)

  • Hamza Fawzy

    (Department of Mechanical Power Engineering, Faculty of Engineering, Menoufia University, Shebin El Kom 32511, Egypt)

Abstract

To provide a clean and cheap source of natural ventilation in windy and arid zones, a windcatcher facility is the best option. This paper aims to study the effect of the inlet opening angle of a new windcatcher model with different values ranging from 60° to 90° for three different feeding orientations at leading-down, central-up, and trailing-down locations. The ventilation performance of the new one-sided windcatcher is numerically examined using CFD simulations, where the 3D RANS and k-epsilon equations are applied at different wind speeds. The flow features of the new models are analyzed and compared with a basic traditional model based on the induced air distribution, aerodynamic losses, and ventilation rates. Results revealed that the sharp edge of the inlet opening leads to an increase in the flow separation and recirculation zone, especially when the opening angle is increased. The highest pressure coefficient is achieved by the trailing-down model compared with the other windcatcher models at an opening angle of 90°. The total pressure drop and ventilation rates increase in all the new windcatcher models due to the increase in the opening angle from 60° to 90°. At identical conditions, with an opening angle of 90° and wind speed of 5 m/s, the trailing-down model achieved a higher pressure coefficient than the leading-down and central-up models by 20.55% and 37.37%, respectively. Furthermore, the trailing-down model could provide higher ventilation rates than the central-up and leading-down models by 31% and 42%, respectively. Finally, the trailing-down windcatcher model can be recommended as the best choice to provide natural ventilation at Taif City in Saudi Arabia.

Suggested Citation

  • Ashraf Balabel & Mamdooh Alwetaishi & Wageeh A. El-Askary & Hamza Fawzy, 2021. "Numerical Study on Natural Ventilation Characteristics of a Partial-Cylinder Opening for One-Sided-Windcatcher of Variable Air-Feeding Orientations in Taif, Saudi Arabia," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11310-:d:655371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abolfazl Heidari & Sadra Sahebzadeh & Zahra Dalvand, 2017. "Natural Ventilation in Vernacular Architecture of Sistan, Iran; Classification and CFD Study of Compound Rooms," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    2. Calautit, John Kaiser & O’Connor, Dominic & Tien, Paige Wenbin & Wei, Shuangyu & Pantua, Conrad Allan Jay & Hughes, Ben, 2020. "Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis," Renewable Energy, Elsevier, vol. 160(C), pages 465-482.
    3. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    4. Montazeri, H. & Montazeri, F. & Azizian, R. & Mostafavi, S., 2010. "Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling," Renewable Energy, Elsevier, vol. 35(7), pages 1424-1435.
    5. Calautit, John Kaiser & Tien, Paige Wenbin & Wei, Shuangyu & Calautit, Katrina & Hughes, Ben, 2020. "Numerical and experimental investigation of the indoor air quality and thermal comfort performance of a low energy cooling windcatcher with heat pipes and extended surfaces," Renewable Energy, Elsevier, vol. 145(C), pages 744-756.
    6. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    7. Calautit, John Kaiser & O'Connor, Dominic & Hughes, Ben Richard, 2016. "A natural ventilation wind tower with heat pipe heat recovery for cold climates," Renewable Energy, Elsevier, vol. 87(P3), pages 1088-1104.
    8. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    9. Dehghani-sanij, A.R. & Soltani, M. & Raahemifar, K., 2015. "A new design of wind tower for passive ventilation in buildings to reduce energy consumption in windy regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 182-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    2. Liu, Miaomiao & Nejat, Payam & Cao, Pinlu & Jimenez-Bescos, Carlos & Calautit, John Kaiser, 2024. "A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    4. Calautit, John Kaiser & O’Connor, Dominic & Tien, Paige Wenbin & Wei, Shuangyu & Pantua, Conrad Allan Jay & Hughes, Ben, 2020. "Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis," Renewable Energy, Elsevier, vol. 160(C), pages 465-482.
    5. Ardalan Aflaki & Masoud Esfandiari & Saleh Mohammadi, 2021. "A Review of Numerical Simulation as a Precedence Method for Prediction and Evaluation of Building Ventilation Performance," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    6. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    7. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    8. Tien, Paige Wenbin & Wei, Shuangyu & Liu, Tianshu & Calautit, John & Darkwa, Jo & Wood, Christopher, 2021. "A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand," Renewable Energy, Elsevier, vol. 177(C), pages 603-625.
    9. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Kang, Daeho & Strand, Richard K., 2016. "Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system," Applied Energy, Elsevier, vol. 178(C), pages 269-280.
    11. Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
    12. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    13. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Kang, Daeho & Strand, Richard K., 2018. "Performance control of a spray passive down-draft evaporative cooling system," Applied Energy, Elsevier, vol. 222(C), pages 915-931.
    16. Madjid Soltani & Alireza Dehghani-Sanij & Ahmad Sayadnia & Farshad M. Kashkooli & Kobra Gharali & SeyedBijan Mahbaz & Maurice B. Dusseault, 2018. "Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface," Energies, MDPI, vol. 11(5), pages 1-23, April.
    17. Marouen Ghoulem & Khaled El Moueddeb & Ezzedine Nehdi & Fangliang Zhong & John Calautit, 2020. "Design of a Passive Downdraught Evaporative Cooling Windcatcher (PDEC-WC) System for Greenhouses in Hot Climates," Energies, MDPI, vol. 13(11), pages 1-23, June.
    18. Bai, H.Y. & Liu, P. & Justo Alonso, M. & Mathisen, H.M., 2022. "A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    20. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11310-:d:655371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.