IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p598-d1327138.html
   My bibliography  Save this article

Comprehensive Evaluation and Scheme Optimization for Power Transmission and Transformation Projects with the Adoption of Carbon Reduction Technologies

Author

Listed:
  • Shuyuan Zhao

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Heng Chen

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Chengyu Jia

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Yinan Wang

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Cheng Xin

    (State Grid Economic and Technical Research Institute Co., Ltd., Beijing 102209, China)

  • Xue Jiang

    (Economic and Technical Research Institute of State Grid Liaoning Electric Power Co., Shenyang 110015, China)

Abstract

To investigate the economic impact of carbon reduction technology on power transmission and transformation projects, carbon reduction technologies adapted to power transmission and transformation projects were investigated, and the evaluation indicator system for cost-benefit in power transmission and transformation projects was established based on AHP (Analytic Hierarchy Process) and EWM (Entropy Weight Method). Taking 110 kV and 220 kV transmission and transformation projects in a province located in northwest China as an example, a sensitivity analysis was carried out for the weight of each carbon reduction technology. Additionally, based on the evaluation indicator system, eight alternative carbon reduction schemes were proposed, and the net present value and scheme scores were analyzed with TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The results showed that in the criterion layer of the 110 kV case, the highest proportion of weight is “high-efficiency transformer”, accounting for 34.12%, and in the indicator layer, the highest proportion of weight is “ parasitic losses”, accounting for 12.35%. After conducting error analysis on the 110 kV and 220 kV cases, it was found that the errors were within an acceptable range both in the criterion layer and index layer. Moreover, it is expected to achieve greater economic benefits through lower costs according to Scheme VI, and due to the limitations of carbon reduction technologies and the lack of a relevant policy system, it is difficult to achieve the goal of covering costs with benefits for the eight schemes studied.

Suggested Citation

  • Shuyuan Zhao & Heng Chen & Chengyu Jia & Yinan Wang & Cheng Xin & Xue Jiang, 2024. "Comprehensive Evaluation and Scheme Optimization for Power Transmission and Transformation Projects with the Adoption of Carbon Reduction Technologies," Energies, MDPI, vol. 17(3), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:598-:d:1327138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yaowen & Chen, Zhihua & Wang, Dengjia & Liu, Yanfeng & Zhang, Yaya & Liu, Yanming & Zhao, Yiting & Gao, Meng & Fan, Jianhua, 2023. "Co-optimization of passive building and active solar heating system based on the objective of minimum carbon emissions," Energy, Elsevier, vol. 275(C).
    2. Wu, Zhiyue & Shi, Xin & Fang, Fang & Wen, Gangcheng & Mi, Yunjie, 2023. "Co-optimization of building energy systems with renewable generations combining active and passive energy-saving," Applied Energy, Elsevier, vol. 351(C).
    3. Zare Banadkouki, Mohammad Reza, 2023. "Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS," Energy, Elsevier, vol. 279(C).
    4. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meijing Liu & Changqi Liu & Hao Xie & Zhonghui Zhao & Chong Zhu & Yangang Lu & Changsheng Bu, 2023. "Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study," Energies, MDPI, vol. 16(20), pages 1-21, October.
    2. Yinan Wang & Heng Chen & Shuyuan Zhao & Lanxin Fan & Cheng Xin & Xue Jiang & Fan Yao, 2024. "Benefit Evaluation of Carbon Reduction in Power Transmission and Transformation Projects Based on the Modified TOPSIS-RSR Method," Energies, MDPI, vol. 17(12), pages 1-23, June.
    3. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    4. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    5. Constantinos Vassiliades & Christos Minterides & Olga-Eleni Astara & Giovanni Barone & Ioannis Vardopoulos, 2023. "Socio-Economic Barriers to Adopting Energy-Saving Bioclimatic Strategies in a Mediterranean Sustainable Real Estate Setting: A Quantitative Analysis of Resident Perspectives," Energies, MDPI, vol. 16(24), pages 1-18, December.
    6. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    7. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    8. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    9. Wang, Zhaohua & Liu, Qiang & Zhang, Bin, 2022. "What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    11. Zejun Yu & Yao Wang & Bin Zhao & Zhixin Li & Qingli Hao, 2023. "Research on Carbon Emission Structure and Model in Low-Carbon Rural Areas: Bibliometric Analysis," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    12. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Claudia Calle Müller & Mohamed ElZomor, 2024. "Addressing Post-Disaster Challenges and Fostering Social Mobility through Origami Infrastructure and Construction Trade Education," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    14. Craig Langston & Edwin H. W. Chan & Esther H. K. Yung, 2018. "Hybrid Input-Output Analysis of Embodied Carbon and Construction Cost Differences between New-Build and Refurbished Projects," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    15. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    16. ZhiWu Zhou & Julián Alcalá & Víctor Yepes, 2020. "Environmental, Economic and Social Impact Assessment: Study of Bridges in China’s Five Major Economic Regions," IJERPH, MDPI, vol. 18(1), pages 1-33, December.
    17. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    18. Andrea Salandin & Alberto Quintana-Gallardo & Vicente Gómez-Lozano & Ignacio Guillén-Guillamón, 2022. "The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    19. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    20. Luiz Maurício Maués & Norma Beltrão & Isabela Silva, 2021. "GHG Emissions Assessment of Civil Construction Waste Disposal and Transportation Process in the Eastern Amazon," Sustainability, MDPI, vol. 13(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:598-:d:1327138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.