IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6475-d1550421.html
   My bibliography  Save this article

Load Optimization for Connected Modern Buildings Using Deep Hybrid Machine Learning in Island Mode

Author

Listed:
  • Seyed Morteza Moghimi

    (Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada)

  • Thomas Aaron Gulliver

    (Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada)

  • Ilamparithi Thirumarai Chelvan

    (Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
    These authors contributed equally to this work.)

  • Hossen Teimoorinia

    (Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
    NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
    These authors contributed equally to this work.)

Abstract

This paper examines Connected Smart Green Buildings (CSGBs) in Burnaby, BC, Canada, with a focus on townhouses with one to four bedrooms. The proposed model integrates sustainable materials and smart components such as recycled insulation, Photovoltaic (PV) solar panels, smart meters, and high-efficiency systems. These elements improve energy efficiency and promote sustainability. Operating in island mode, CSGBs can function independently of the grid, providing resilience during power outages and reducing reliance on external energy sources. Real data on electricity, gas, and water consumption are used to optimize load management under isolated conditions. Electric Vehicles (EVs) are also considered in the system. They serve as energy storage devices and, through Vehicle-to-Grid (V2G) technology, can supply power when needed. A hybrid Machine Learning (ML) model combining Long Short-Term Memory (LSTM) and a Convolutional Neural Network (CNN) is proposed to improve the performance. The metrics considered include accuracy, efficiency, emissions, and cost. The performance was compared with several well-known models including Linear Regression (LR), CNN, LSTM, Random Forest (RF), Gradient Boosting (GB), and hybrid LSTM–CNN, and the results show that the proposed model provides the best results. For a four-bedroom Connected Smart Green Townhouse (CSGT), the Mean Absolute Percentage Error (MAPE) is 4.43%, the Root Mean Square Error (RMSE) is 3.49 kWh, the Mean Absolute Error (MAE) is 3.06 kWh, and R 2 is 0.81. These results indicate that the proposed model provides robust load optimization, particularly in island mode, and highlight the potential of CSGBs for sustainable urban living.

Suggested Citation

  • Seyed Morteza Moghimi & Thomas Aaron Gulliver & Ilamparithi Thirumarai Chelvan & Hossen Teimoorinia, 2024. "Load Optimization for Connected Modern Buildings Using Deep Hybrid Machine Learning in Island Mode," Energies, MDPI, vol. 17(24), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6475-:d:1550421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen-Cheng Wang & Ngakan Ketut Acwin Dwijendra & Biju Theruvil Sayed & José Ricardo Nuñez Alvarez & Mohammed Al-Bahrani & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Internet of Things Energy Consumption Optimization in Buildings: A Step toward Sustainability," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    2. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    3. Sunyong Kim & Hyuk Lim, 2018. "Reinforcement Learning Based Energy Management Algorithm for Smart Energy Buildings," Energies, MDPI, vol. 11(8), pages 1-19, August.
    4. Zhou, Xinlei & Du, Han & Xue, Shan & Ma, Zhenjun, 2024. "Recent advances in data mining and machine learning for enhanced building energy management," Energy, Elsevier, vol. 307(C).
    5. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    6. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    7. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    8. Koen Jochmans, 2022. "Heteroscedasticity-Robust Inference in Linear Regression Models With Many Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 887-896, April.
    9. Seyed Morteza Moghimi & Thomas Aaron Gulliver & Ilamparithi Thirumai Chelvan, 2024. "Energy Management in Modern Buildings Based on Demand Prediction and Machine Learning—A Review," Energies, MDPI, vol. 17(3), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Morteza Moghimi & Thomas Aaron Gulliver & Ilamparithi Thirumarai Chelvan & Hossen Teimoorinia, 2024. "Resource Optimization for Grid-Connected Smart Green Townhouses Using Deep Hybrid Machine Learning," Energies, MDPI, vol. 17(23), pages 1-31, December.
    2. Abuzayed, Anas & Hartmann, Niklas, 2022. "MyPyPSA-Ger: Introducing CO2 taxes on a multi-regional myopic roadmap of the German electricity system towards achieving the 1.5 °C target by 2050," Applied Energy, Elsevier, vol. 310(C).
    3. Aguilar, J. & Garces-Jimenez, A. & R-Moreno, M.D. & García, Rodrigo, 2021. "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    5. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    6. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    7. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    8. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    9. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    11. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    12. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    13. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    17. Kandpal, Bakul & Backe, Stian & Crespo del Granado, Pedro, 2024. "Enhancing bargaining power for energy communities in renewable power purchase agreements using Gaussian learning and fixed price bargaining," Energy, Elsevier, vol. 309(C).
    18. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    19. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6475-:d:1550421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.