IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6367-d1546600.html
   My bibliography  Save this article

Solar Energy in Buildings: Feasibility Analysis of Integrated and Conventional Photovoltaic Panels

Author

Listed:
  • Francisco Javier Becerra-González

    (Faculty of Chemical Sciences and Engineering, Autonomous University of the State of Morelos, Cuernavaca 62209, MR, Mexico)

  • José Gerardo Vera-Dimas

    (Faculty of Chemical Sciences and Engineering, Autonomous University of the State of Morelos, Cuernavaca 62209, MR, Mexico)

  • Luis Cisneros-Villalobos

    (Faculty of Chemical Sciences and Engineering, Autonomous University of the State of Morelos, Cuernavaca 62209, MR, Mexico)

  • Alina Martínez-Oropeza

    (Faculty of Chemical Sciences and Engineering, Autonomous University of the State of Morelos, Cuernavaca 62209, MR, Mexico)

Abstract

The feasibility study is crucial for decision-making in the investment stage of photovoltaic systems projects. A cost–benefit analysis for a project should not be evaluated solely in terms of money in-flows and outflows; it is important to consider other characteristics such as climate, solar irradiation, and the hours of sunshine in different spaces, as well as the electricity rates of the electricity supply company. Therefore, analyzing and simulating the performance conditions, both technical and economic, of photovoltaic systems is key. The objective of this study was to analyze the investment models in two types of photovoltaic systems: one integrated into the construction and the other conventional in a building in the Mexican Republic, considering ideal conditions, thus evaluating the energy efficiency in cities, as they consume around two-thirds of the world’s energy and are responsible for 70% of global greenhouse gas emissions. The methodological proposal was to select a location, determine the predominant type of climate and collect data on solar radiation, the electricity supplier rates, the profitability for a cost–benefit analysis, and the inflation rates to determine the viability of a project that comprehensively covers the variables for decision-making.

Suggested Citation

  • Francisco Javier Becerra-González & José Gerardo Vera-Dimas & Luis Cisneros-Villalobos & Alina Martínez-Oropeza, 2024. "Solar Energy in Buildings: Feasibility Analysis of Integrated and Conventional Photovoltaic Panels," Energies, MDPI, vol. 17(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6367-:d:1546600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    2. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    2. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
    3. Manfredi Picciotto Maniscalco & Sonia Longo & Gabriele Miccichè & Maurizio Cellura & Marco Ferraro, 2023. "A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-18, December.
    4. Aurel Gontean & Septimiu Lica & Szilard Bularka & Roland Szabo & Dan Lascu, 2017. "A Novel High Accuracy PV Cell Model Including Self Heating and Parameter Variation," Energies, MDPI, vol. 11(1), pages 1-21, December.
    5. Castanheira, André F.A. & Fernandes, João F.P. & Branco, P.J. Costa, 2018. "Demonstration project of a cooling system for existing PV power plants in Portugal," Applied Energy, Elsevier, vol. 211(C), pages 1297-1307.
    6. Xudong Wang & Jinmao Chen & Chunhua Xiong & Shizhan Li & Wanli Xu, 2023. "Analysis of Laser Cell Response Characteristics under Different Irradiation Conditions," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    7. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    8. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    9. Sheel Bhadra & Niloy Sen & Akshay K K & Harmeet Singh & Paul G. O’Brien, 2023. "Design and Evaluation of a Water-Based, Semitransparent Photovoltaic Thermal Trombe Wall," Energies, MDPI, vol. 16(4), pages 1-15, February.
    10. Or Gindi & Zeev Fradkin & Anat Itzhak & Peter Beker, 2023. "Lowering the Temperature and Increasing the Fill Factor of Silicon Solar Cells by Filtering of Sub-Bandgap Wavelengths," Energies, MDPI, vol. 16(15), pages 1-15, July.
    11. Issa Ibrahim Berchin & Jéssica Garcia & Mauri Luiz Heerdt & Angélica de Quevedo Moreira & Ana Clara Medeiros da Silveira & José Baltazar Salgueirinho Osório de Andrade Guerra, 2015. "Energy production and sustainability: A study of Belo Monte hydroelectric power plant," Natural Resources Forum, Blackwell Publishing, vol. 39(3-4), pages 224-237, August.
    12. Cuce, Erdem & Cuce, Pinar Mert & Young, Chin-Huai, 2016. "Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing," Energy, Elsevier, vol. 97(C), pages 369-380.
    13. Zhang, Yunpeng & Hao, Peng & Lu, Hao & Ma, Jiao & Yang, Ming, 2022. "Modelling and estimating performance for PV module under varying operating conditions independent of reference condition," Applied Energy, Elsevier, vol. 310(C).
    14. Abbas, Naseem & Awan, Muhammad Bilal & Amer, Mohammed & Ammar, Syed Muhammad & Sajjad, Uzair & Ali, Hafiz Muhammad & Zahra, Nida & Hussain, Muzamil & Badshah, Mohsin Ali & Jafry, Ali Turab, 2019. "Applications of nanofluids in photovoltaic thermal systems: A review of recent advances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. Adnan Ayaz & Faraz Ahmad & Mohammad Abdul Aziz Irfan & Zabdur Rehman & Krzysztof Rajski & Jan Danielewicz, 2022. "Comparison of Ground-Based Global Horizontal Irradiance and Direct Normal Irradiance with Satellite-Based SUNY Model," Energies, MDPI, vol. 15(7), pages 1-14, March.
    16. Ndeto, Martin Paul & Wekesa, David Wafula & Kinyua, Robert & Njoka, Francis, 2020. "Investigation into the effects of the earth’s magnetic field on the conversion efficiency of solar cells," Renewable Energy, Elsevier, vol. 159(C), pages 184-194.
    17. Slawomir Gulkowski, 2023. "Modeling and Experimental Studies of the Photovoltaic System Performance in Climate Conditions of Poland," Energies, MDPI, vol. 16(20), pages 1-16, October.
    18. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    19. Enany, Mohamed A. & Farahat, Mohamed A. & Nasr, Ahmed, 2016. "Modeling and evaluation of main maximum power point tracking algorithms for photovoltaics systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1578-1586.
    20. Khan, Firoz & Baek, Seong-Ho & Kim, Jae Hyun, 2014. "Intensity dependency of photovoltaic cell parameters under high illumination conditions: An analysis," Applied Energy, Elsevier, vol. 133(C), pages 356-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6367-:d:1546600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.