IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6301-d1543268.html
   My bibliography  Save this article

An Economic Analysis of Mid- to Long-Term Prospects for Deep-Sea Offshore Wind-Power-to-Ammonia: A Case Study of Fujian Province

Author

Listed:
  • Xiaoying Zheng

    (State Key Lab of Power System Operation and Control, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Pei Liu

    (State Key Lab of Power System Operation and Control, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Deep-sea offshore wind power is crucial for reducing emissions in certain regions’ energy transitions. However, its development has been largely overlooked due to its high investment costs and fluctuation. Ammonia production offers a significant opportunity to enhance economic feasibility and facilitate energy consumption. This study, using a bottom-up model and based on the energy system of Fujian Province, China, examines the technical pathways for offshore wind-to-ammonia production. Through extensive scenario calculations, the study analyzes economic factors affecting the development of DOWD. The results show that when ammonia prices range from USD 0.52 to USD 0.6/kg, the deep-sea offshore wind with ammonia production (DOWD+AP) mode demonstrates its advantages, while the price of a single DOWD unit must fall below USD 1.73/W to show superiority. It is recommended that the installation of DOWD in Fujian province should not begin before 2040, with potential ammonia production capacity reaching 24 Mt/year. If ammonia production is unrestricted, the DOWD+AP mode could introduce a new method for flexible regulation, primarily compensating for gaps in solar- and wind-power generation during the summer months.

Suggested Citation

  • Xiaoying Zheng & Pei Liu, 2024. "An Economic Analysis of Mid- to Long-Term Prospects for Deep-Sea Offshore Wind-Power-to-Ammonia: A Case Study of Fujian Province," Energies, MDPI, vol. 17(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6301-:d:1543268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    2. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    3. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    4. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    5. Moreno-Leiva, Simón & Haas, Jannik & Nowak, Wolfgang & Kracht, Willy & Eltrop, Ludger & Breyer, Christian, 2021. "Integration of seawater pumped storage and desalination in multi-energy systems planning: The case of copper as a key material for the energy transition," Applied Energy, Elsevier, vol. 299(C).
    6. Li, Yunlong & Feng, Lai & Chen, Wei, 2024. "Chemical effect of H2 on NH3 combustion in an O2 environment via molecular dynamics simulations," Energy, Elsevier, vol. 308(C).
    7. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    8. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    9. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    10. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    11. Victor N. Sagel & Kevin H. R. Rouwenhorst & Jimmy A. Faria, 2022. "Renewable Electricity Generation in Small Island Developing States: The Effect of Importing Ammonia," Energies, MDPI, vol. 15(9), pages 1-18, May.
    12. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    13. Moreno-Leiva, Simón & Haas, Jannik & Nowak, Wolfgang & Kracht, Willy & Eltrop, Ludger & Breyer, Christian, 2024. "Flexible copper: Exploring capacity-based energy demand flexibility in the industry," Energy, Elsevier, vol. 305(C).
    14. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    15. Egerer, Jonas & Grimm, Veronika & Niazmand, Kiana & Runge, Philipp, 2023. "The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany”," Applied Energy, Elsevier, vol. 334(C).
    16. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    17. Bogdanov, Dmitrii & Ram, Manish & Khalili, Siavash & Aghahosseini, Arman & Fasihi, Mahdi & Breyer, Christian, 2024. "Effects of direct and indirect electrification on transport energy demand during the energy transition," Energy Policy, Elsevier, vol. 192(C).
    18. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2024. "An assessment of decarbonisation pathways for intercontinental deep-sea shipping using power-to-X fuels," Applied Energy, Elsevier, vol. 376(PA).
    19. Öberg, Simon & Odenberger, Mikael & Johnsson, Filip, 2022. "The cost dynamics of hydrogen supply in future energy systems – A techno-economic study," Applied Energy, Elsevier, vol. 328(C).
    20. Stefano Mingolla & Paolo Gabrielli & Alessandro Manzotti & Matthew J. Robson & Kevin Rouwenhorst & Francesco Ciucci & Giovanni Sansavini & Magdalena M. Klemun & Zhongming Lu, 2024. "Effects of emissions caps on the costs and feasibility of low-carbon hydrogen in the European ammonia industry," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6301-:d:1543268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.