IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6264-d1542089.html
   My bibliography  Save this article

A Refined Approach for Angle of Attack Estimation and Dynamic Force Hysteresis in H-Type Darrieus Wind Turbines

Author

Listed:
  • Jan Michna

    (Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland)

  • Krzysztof Rogowski

    (Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland)

Abstract

This study investigates the aerodynamic performance and flow dynamics of an H-type Darrieus vertical axis wind turbine (VAWT) using combined numerical and experimental methods. The analysis examines the effects of operational parameters, such as rotor solidity and pitch angle, on aerodynamic loads and flow characteristics, using a 2-D URANS simulation with the Transition SST model to capture transient effects. Validation was conducted in a low-turbulence wind tunnel to observe the impact of variable flow conditions. The LineAverage method for determining the angle of attack demonstrated strong correlations between rotor configuration and load variations, particularly highlighting the influence of blade number and pitch angle on aerodynamic efficiency. This research supports optimization strategies for Darrieus VAWTs in urban environments, where turbulent, low-speed conditions challenge conventional wind turbine designs.

Suggested Citation

  • Jan Michna & Krzysztof Rogowski, 2024. "A Refined Approach for Angle of Attack Estimation and Dynamic Force Hysteresis in H-Type Darrieus Wind Turbines," Energies, MDPI, vol. 17(24), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6264-:d:1542089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abolfazl Abdolahifar & Amir Zanj, 2024. "Addressing VAWT Aerodynamic Challenges as the Key to Unlocking Their Potential in the Wind Energy Sector," Energies, MDPI, vol. 17(20), pages 1-17, October.
    2. Lakshmi Srinivasan & Nishanth Ram & Sudharshan Bharatwaj Rengarajan & Unnikrishnan Divakaran & Akram Mohammad & Ratna Kishore Velamati, 2023. "Effect of Macroscopic Turbulent Gust on the Aerodynamic Performance of Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(5), pages 1-24, February.
    3. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    4. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    5. Luis Santamaría & Mónica Galdo Vega & Adrián Pandal & José González Pérez & Sandra Velarde-Suárez & Jesús Manuel Fernández Oro, 2022. "Aerodynamic Performance of VAWT Airfoils: Comparison between Wind Tunnel Testing Using a New Three-Component Strain Gauge Balance and CFD Modelling," Energies, MDPI, vol. 15(24), pages 1-18, December.
    6. Yanan Yang & Yang Cao & Zhong Qian & Jian Wang & Yixian Zhu & Xia Chen & Wendong Zhang & Yujie Wang & Guoqing Wu & Shaohua Chen, 2024. "A Study on the Effect of Turbulence Intensity on Dual Vertical-Axis Wind Turbine Aerodynamic Performance," Energies, MDPI, vol. 17(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    2. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    3. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    5. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    6. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    7. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    8. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction," Energy, Elsevier, vol. 189(C).
    9. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    10. Cinzia Rainone & Danilo De Siero & Luigi Iuspa & Antonio Viviani & Giuseppe Pezzella, 2023. "A Numerical Procedure for Variable-Pitch Law Formulation of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(1), pages 1-20, January.
    11. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    12. Wenxing Hao & Abdulshakur Abdi & Guobiao Wang & Fuzhong Wu, 2023. "Study on the Pitch Angle Effect on the Power Coefficient and Blade Fatigue Load of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(21), pages 1-18, October.
    13. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    14. Rezaeiha, Abdolrahim & Pereira, Ricardo & Kotsonis, Marios, 2017. "Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large Horizontal Axis Wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 904-916.
    15. Wang, Zhenyu & Zhuang, Mei, 2017. "Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios," Applied Energy, Elsevier, vol. 208(C), pages 1184-1197.
    16. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    18. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    19. Trentin, Pedro Francisco Silva & Martinez, Pedro Henrique Barsanaor de Barros & dos Santos, Gabriel Bertacco & Gasparin, Elóy Esteves & Salviano, Leandro Oliveira, 2022. "Screening analysis and unconstrained optimization of a small-scale vertical axis wind turbine," Energy, Elsevier, vol. 240(C).
    20. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6264-:d:1542089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.