IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6208-d1539960.html
   My bibliography  Save this article

Framework and Outlooks of Multi-Source–Grid–Load Coordinated Low-Carbon Operational Systems Considering Demand-Side Hierarchical Response

Author

Listed:
  • Yong Cui

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
    College of Management, Anhui Science and Technology University, Bengbu 233030, China)

  • Jian Zheng

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Wenying Wu

    (College of Management, Anhui Science and Technology University, Bengbu 233030, China)

  • Kun Xu

    (Anhui Qiankun Electric Power Engineering Co., Ltd., Hefei 231283, China)

  • Desen Ji

    (State Grid Jiangxi Elect Power Metering Ctr., Nanchang 330000, China)

  • Tian Di

    (College of Management, Anhui Science and Technology University, Bengbu 233030, China)

Abstract

In the context of advancing new power systems, a multi-source–grid–load interactive operation framework considering low-carbon demand hierarchical response is developed to further explore the support value of the multi-source–grid–load interaction mechanism for the low-carbon economic operation of the power system. The framework analyzes the support mechanisms of carbon tracking and load-side demand response for the low-carbon economic dispatch of the system and derives the carbon flow calculation method based on the network node correlation matrix, laying the foundation for developing low-carbon demand response strategies. Meanwhile, considering the marginal contribution of each load-side node to the system carbon emissions, a combined Shapley–Topsis low-carbon demand hierarchical response mechanism is designed to guide load nodes in implementing accurate low-carbon hierarchical responses, thereby ensuring the optimal allocation and efficient utilization of system resources. Finally, based on the proposed framework, promising future research perspectives are proposed to provide critical insights for constructing a low-carbon and reliable new energy system.

Suggested Citation

  • Yong Cui & Jian Zheng & Wenying Wu & Kun Xu & Desen Ji & Tian Di, 2024. "Framework and Outlooks of Multi-Source–Grid–Load Coordinated Low-Carbon Operational Systems Considering Demand-Side Hierarchical Response," Energies, MDPI, vol. 17(23), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6208-:d:1539960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    2. Li, Yaowang & Yang, Xuxin & Du, Ershun & Liu, Yuliang & Zhang, Shixu & Yang, Chen & Zhang, Ning & Liu, Chang, 2024. "A review on carbon emission accounting approaches for the electricity power industry," Applied Energy, Elsevier, vol. 359(C).
    3. Jin, Cheng & Lv, Zhiwei & Li, Zengrong & Sun, Kehan, 2023. "Green finance, renewable energy and carbon neutrality in OECD countries," Renewable Energy, Elsevier, vol. 211(C), pages 279-284.
    4. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & He, Gang & Zheng, Yanan, 2017. "An integrated source-grid-load planning model at the macro level: Case study for China's power sector," Energy, Elsevier, vol. 126(C), pages 231-246.
    5. Yinan Wang & Heng Chen & Shuyuan Zhao & Lanxin Fan & Cheng Xin & Xue Jiang & Fan Yao, 2024. "Benefit Evaluation of Carbon Reduction in Power Transmission and Transformation Projects Based on the Modified TOPSIS-RSR Method," Energies, MDPI, vol. 17(12), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    2. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    3. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    4. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    5. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    6. Li, Tianxiao & Li, Zheng & Li, Weiqi, 2020. "Scenarios analysis on the cross-region integrating of renewable power based on a long-period cost-optimization power planning model," Renewable Energy, Elsevier, vol. 156(C), pages 851-863.
    7. Wang, B. & Liu, L. & Huang, G.H. & Li, W. & Xie, Y.L., 2018. "Effects of carbon and environmental tax on power mix planning - A case study of Hebei Province, China," Energy, Elsevier, vol. 143(C), pages 645-657.
    8. Meryem Filiz Baştürk, 2024. "Does Green Finance Reduce Carbon Emissions? Global Evidence Based on System Generalized Method of Moments," Sustainability, MDPI, vol. 16(18), pages 1-13, September.
    9. Xi Zhao & Siqin Zhang & Najid Ahmad & Shuangguo Wang & Jiaxing Zhao, 2024. "Unlocking Sustainable Growth: The Transformative Impact of Green Finance on Industrial Carbon Emissions in China," Sustainability, MDPI, vol. 16(18), pages 1-21, September.
    10. Wesseh, Presley K. & Benjamin, Nelson I. & Lin, Boqiang, 2022. "The coordination of pumped hydro storage, electric vehicles, and climate policy in imperfect electricity markets: Insights from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    12. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    13. Ning Zhang & Hongcai Dai & Yaohua Wang & Yunzhou Zhang & Yuqing Yang, 2021. "Power system transition in China under the coordinated development of power sources, network, demand response, and energy storage," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(2), March.
    14. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    15. Chen, Di & Hu, Haiqing & Wang, Ning & Chang, Chun-Ping, 2024. "The impact of green finance on transformation to green energy: Evidence from industrial enterprises in China," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    16. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    17. Lingyan Zhang & Shan Huang & Yunchen Zhu & Chen Hua & Mingjun Cheng & Song Yao & Yonghua Li, 2023. "Supply and Demand for Planning and Construction of Nighttime Urban Lighting: A Comparative Case Study of Binjiang District, Hangzhou," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    18. Weijuan Feng & Xiangbin Zuo, 2024. "RETRACTED ARTICLE: The intersection of China’s rural economy, renewable energy, and carbon neutrality," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-18, April.
    19. Al Mamun, Md & Boubaker, Sabri & Hossain, Md Zakir & Manita, Riadh, 2024. "Female political empowerment and green finance," Energy Economics, Elsevier, vol. 131(C).
    20. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6208-:d:1539960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.