IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6146-d1537824.html
   My bibliography  Save this article

Research on Safe-Economic Dispatch Strategy for Renewable Energy Power Stations Based on Game-Fairness Empowerment

Author

Listed:
  • Zhen Zhang

    (Qinghai Electric Power Dispatching Control Center, Xining 810001, China)

  • Wenjun Xian

    (Qinghai Electric Power Dispatching Control Center, Xining 810001, China)

  • Weijun Tan

    (Qinghai Electric Power Dispatching Control Center, Xining 810001, China)

  • Jinghua Li

    (Qinghai Electric Power Dispatching Control Center, Xining 810001, China)

  • Xiaofeng Liu

    (School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210000, China)

Abstract

The optimal dispatching of renewable energy power stations is particularly crucial in scenarios where the stations face energy rationing due to the large proportion of renewable energy integrated into the power system. In order to achieve safe, economical, and fair scheduling of renewable energy power stations, this paper proposes a two-stage scheduling framework. Specifically, in the initial stage, the maximum consumption space of renewable energy for the system can be optimized by optimizing the formulated safe-economic dispatch model. In the second stage, the fair allocation mechanism of renewable energy power stations is proposed based on the game-fairness empowerment approach. In order to obtain a comprehensive evaluation of renewable energy power stations, an evaluation index system is constructed considering equipment performance, output characteristics, reliability, flexibility, and economy. Subsequently, the cooperative game weighting method is proposed to rank the performance of renewable energy power stations as the basis for fair dispatching. Simulation results show that the proposed scheduling strategy can effectively ensure the priority of renewable energy power stations based on their comprehensive ranking, and improve the safety, economy, and fairness of power station participation in scheduling.

Suggested Citation

  • Zhen Zhang & Wenjun Xian & Weijun Tan & Jinghua Li & Xiaofeng Liu, 2024. "Research on Safe-Economic Dispatch Strategy for Renewable Energy Power Stations Based on Game-Fairness Empowerment," Energies, MDPI, vol. 17(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6146-:d:1537824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min Xu & Wanwei Li & Zhihui Feng & Wangwang Bai & Lingling Jia & Zhanhong Wei, 2023. "Economic Dispatch Model of High Proportional New Energy Grid-Connected Consumption Considering Source Load Uncertainty," Energies, MDPI, vol. 16(4), pages 1-20, February.
    2. Ahmad, Ejaz & Khan, Dilawar & Anser, Muhammad Khalid & Nassani, Abdelmohsen A. & Hassan, Syeda Anam & Zaman, Khalid, 2024. "The influence of grid connectivity, electricity pricing, policy-driven power incentives, and carbon emissions on renewable energy adoption: Exploring key factors," Renewable Energy, Elsevier, vol. 232(C).
    3. Anthony Papavasiliou & Yuting Mou & Léopold Cambier & Damien Scieur, 2018. "Application of stochastic dual dynamic programming to the real-time dispatch of storage under renewable supply uncertainty," LIDAM Reprints CORE 2943, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Li, Huanhuan & Zhang, Runfan & Mahmud, Md. Apel & Hredzak, Branislav, 2022. "A novel coordinated optimization strategy for high utilization of renewable energy sources and reduction of coal costs and emissions in hybrid hydro-thermal-wind power systems," Applied Energy, Elsevier, vol. 320(C).
    5. Wu, Yanjuan & Wang, Caiwei & Wang, Yunliang, 2024. "Cooperative game optimization scheduling of multi-region integrated energy system based on ADMM algorithm," Energy, Elsevier, vol. 302(C).
    6. Jaegul Lee & Solyoung Jung & Yongseung Lee & Gilsoo Jang, 2023. "Energy Storage Mix Optimization Based on Time Sequence Analysis Methodology for Surplus Renewable Energy Utilization," Energies, MDPI, vol. 16(16), pages 1-25, August.
    7. Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
    8. Anthony Papavasiliou & Yuting Mou & Léopold Cambier & Damien Scieur, 2018. "Application of stochastic dual dynamic programming to the real-time dispatch of storage under renewable supply uncertainty," LIDAM Reprints CORE 3044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Qiu, Dawei & Wang, Yi & Zhang, Tingqi & Sun, Mingyang & Strbac, Goran, 2023. "Hierarchical multi-agent reinforcement learning for repair crews dispatch control towards multi-energy microgrid resilience," Applied Energy, Elsevier, vol. 336(C).
    10. Yuanchun Ding, 2021. "Ecological garden plant configuration method based on attribute analytic hierarchy process model," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 24(3/4), pages 168-183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Erfan Mohagheghi & Mansour Alramlawi & Aouss Gabash & Pu Li, 2018. "A Survey of Real-Time Optimal Power Flow," Energies, MDPI, vol. 11(11), pages 1-20, November.
    3. Street, Alexandre & Valladão, Davi & Lawson, André & Velloso, Alexandre, 2020. "Assessing the cost of the Hazard-Decision simplification in multistage stochastic hydrothermal scheduling," Applied Energy, Elsevier, vol. 280(C).
    4. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    5. Alejandra Tabares & Pablo Cortés, 2024. "Using Stochastic Dual Dynamic Programming to Solve the Multi-Stage Energy Management Problem in Microgrids," Energies, MDPI, vol. 17(11), pages 1-24, May.
    6. Yin, S. & Wang, J. & Li, Z. & Fang, X., 2021. "State-of-the-art short-term electricity market operation with solar generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Luyu Wang & Houbo Xiong & Yunhui Shi & Chuangxin Guo, 2023. "Rolling Horizon Robust Real-Time Economic Dispatch with Multi-Stage Dynamic Modeling," Mathematics, MDPI, vol. 11(11), pages 1-20, June.
    8. Nazare, Felipe & Street, Alexandre, 2023. "Solving multistage stochastic linear programming via regularized linear decision rules: An application to hydrothermal dispatch planning," European Journal of Operational Research, Elsevier, vol. 309(1), pages 345-358.
    9. Felipe Nazare & Alexandre Street, 2021. "Solving Multistage Stochastic Linear Programming via Regularized Linear Decision Rules: An Application to Hydrothermal Dispatch Planning," Papers 2110.03146, arXiv.org, revised Jan 2023.
    10. Yıldıran, Uğur, 2023. "Robust multi-stage economic dispatch with renewable generation and storage," European Journal of Operational Research, Elsevier, vol. 309(2), pages 890-909.
    11. Xiong, Houbo & Zhou, Yue & Guo, Chuangxin & Ding, Yi & Luo, Fengji, 2023. "Multi-stage risk-based assessment for wind energy accommodation capability: A robust and non-anticipative method," Applied Energy, Elsevier, vol. 350(C).
    12. Hlalele, Thabo G. & Naidoo, Raj M. & Bansal, Ramesh C. & Zhang, Jiangfeng, 2020. "Multi-objective stochastic economic dispatch with maximal renewable penetration under renewable obligation," Applied Energy, Elsevier, vol. 270(C).
    13. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    14. Erfan Mohagheghi & Mansour Alramlawi & Aouss Gabash & Frede Blaabjerg & Pu Li, 2020. "Real-Time Active-Reactive Optimal Power Flow with Flexible Operation of Battery Storage Systems," Energies, MDPI, vol. 13(7), pages 1-17, April.
    15. Göke, Leonard & Schmidt, Felix & Kendziorski, Mario, 2024. "Stabilized Benders decomposition for energy planning under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 316(1), pages 183-199.
    16. Psarros, Georgios N. & Papathanassiou, Stavros A., 2020. "Internal dispatch for RES-storage hybrid power stations in isolated grids," Renewable Energy, Elsevier, vol. 147(P1), pages 2141-2150.
    17. Paula Medina Maçaira & Yasmin Monteiro Cyrillo & Fernando Luiz Cyrino Oliveira & Reinaldo Castro Souza, 2019. "Including Wind Power Generation in Brazil’s Long-Term Optimization Model for Energy Planning," Energies, MDPI, vol. 12(5), pages 1-20, March.
    18. Zhou Su & Guoqing Yang & Lixiao Yao & Qingqing Zhou & Yuhan Zhang, 2024. "Optimization of Provincial Power Source Structure Planning in Northwestern China Based on Time-Series Production Simulation," Energies, MDPI, vol. 17(19), pages 1-14, September.
    19. Lee, Chien-Chiang & Hussain, Jafar & Mu, Xian, 2024. "Renewable energy and carbon-neutral gaming: A holistic approach to sustainable electricity," Energy, Elsevier, vol. 297(C).
    20. Xu, Xuesong & Xu, Kai & Zeng, Ziyang & Tang, Jiale & He, Yuanxing & Shi, Guangze & Zhang, Tao, 2024. "Collaborative optimization of multi-energy multi-microgrid system: A hierarchical trust-region multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 375(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6146-:d:1537824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.