IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6144-d1537724.html
   My bibliography  Save this article

Image Processing Technique for Enhanced Combustion Efficiency of Wood Pellets

Author

Listed:
  • Thomas Gasperini

    (Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy)

  • Andrea Pizzi

    (Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy)

  • Lucia Olivi

    (Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy)

  • Giuseppe Toscano

    (Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy)

  • Alessio Ilari

    (Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy)

  • Daniele Duca

    (Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy)

Abstract

The combustion efficiency of wood pellets is partly affected by their average length. The ISO 17829 standard defines the methodology for assessing the average length of sample pellets, but the method does not always lead to representative data. Furthermore, a standard analysis is time-consuming as it requires manual measurement of the pellets using a caliper. This paper, whilst evaluating the effect of pellet length on combustion efficiency, proposes a pending-patented dimensional image processing method (DIP) for assessing pellet length. DIP allows the dimensional data of grouped and stacked pellets to be obtained by exploiting the shadows produced by pellets when exposed to a light source, assuming that different-sized pellets produce different shadows. Thus, the proposed method allows for the extraction of dimensional information from non-distinct objects, overcoming the reliance of classical image processing methods on object distance for effective segmentation. Combustion tests, carried out using pellets varying only in length, confirmed the influence of length on combustion efficiency. Shorter pellets, compared to longer ones, significantly reduced CO emissions by up to 94% (mg/MJ). However, they exhibited a higher fuel mass consumption rate (kg/h), with an increase of up to 22.8% compared to the longest sample. In addition, longer pellets produced fewer but larger shadows than shorter ones. Further studies are needed to correlate the number and size of shadows with samples’ average length so that DIP could be implemented in stoves and programmed to communicate with the control unit and automatically optimize the setting in order to improve combustion efficiency.

Suggested Citation

  • Thomas Gasperini & Andrea Pizzi & Lucia Olivi & Giuseppe Toscano & Alessio Ilari & Daniele Duca, 2024. "Image Processing Technique for Enhanced Combustion Efficiency of Wood Pellets," Energies, MDPI, vol. 17(23), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6144-:d:1537724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    2. Giuseppe Toscano & Elena Leoni & Carmine De Francesco & Giacomo Ciccone & Thomas Gasperini, 2023. "The Application of Image Acquisition and Processing Techniques for the Determination of Wooden Pellet Length as an Alternative to ISO 17829," Resources, MDPI, vol. 12(10), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    2. Abdulmumini, Murtala M. & Zigan, Stefan & Bradley, Michael S.A. & Lestander, Torbjörn A., 2020. "Fuel pellet breakage in pneumatic transport and durability tests," Renewable Energy, Elsevier, vol. 157(C), pages 911-919.
    3. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    4. Espinoza-Monje, J. Flavio & Garcés, Hugo O. & Díaz, Juan & Adam, Roman & Lazo, Jorge & Muñoz, Robinson & Coronado, Matías & Saiz, Gustavo & Azócar, Laura, 2024. "Investigating the properties of shrub biomass pellets through additive and sawdust admixing," Renewable Energy, Elsevier, vol. 229(C).
    5. Miloš Pavelek & Marek Prajer & Kamil Trgala, 2018. "Static and Dynamic Thermal Characterization of Timber Frame/Wheat ( Triticum Aestivum ) Chaff Thermal Insulation Panel for Sustainable Building Construction," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    6. Yun, Huimin & Clift, Roland & Bi, Xiaotao, 2020. "Process simulation, techno-economic evaluation and market analysis of supply chains for torrefied wood pellets from British Columbia: Impacts of plant configuration and distance to market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    8. Lisowski, Aleksander & Pajor, Małgorzata & Świętochowski, Adam & Dąbrowska, Magdalena & Klonowski, Jacek & Mieszkalski, Leszek & Ekielski, Adam & Stasiak, Mateusz & Piątek, Michał, 2019. "Effects of moisture content, temperature, and die thickness on the compaction process, and the density and strength of walnut shell pellets," Renewable Energy, Elsevier, vol. 141(C), pages 770-781.
    9. Rita Petlickaitė & Algirdas Jasinskas & Ramūnas Mieldažys & Kęstutis Romaneckas & Marius Praspaliauskas & Jovita Balandaitė, 2022. "Investigation of Pressed Solid Biofuel Produced from Multi-Crop Biomass," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    10. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    11. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    12. Anukam, Anthony & Berghel, Jonas & Henrikson, Gunnar & Frodeson, Stefan & Ståhl, Magnus, 2021. "A review of the mechanism of bonding in densified biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    14. Adam, Roman & Yiyang, Deng & Kruggel-Emden, Harald & Zeng, Thomas & Lenz, Volker, 2024. "Influence of pressure and retention time on briquette volume and raw density during biomass densification with an industrial stamp briquetting machine," Renewable Energy, Elsevier, vol. 229(C).
    15. Dąbrowska, Magdalena & Kozieł, Tomasz & Janaszek-Mańkowska, Monika & Lisowski, Aleksander, 2024. "Image texture analysis of pellets made of lignocellulosic materials," Renewable Energy, Elsevier, vol. 235(C).
    16. Kang, Kang & Zhu, Mingqiang & Sun, Guotao & Qiu, Ling & Guo, Xiaohui & Meda, Venkatesh & Sun, Runcang, 2018. "Codensification of Eucommia ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study," Applied Energy, Elsevier, vol. 223(C), pages 347-357.
    17. Czekała, Wojciech & Bartnikowska, Sylwia & Dach, Jacek & Janczak, Damian & Smurzyńska, Anna & Kozłowski, Kamil & Bugała, Artur & Lewicki, Andrzej & Cieślik, Marta & Typańska, Dorota & Mazurkiewicz, Ja, 2018. "The energy value and economic efficiency of solid biofuels produced from digestate and sawdust," Energy, Elsevier, vol. 159(C), pages 1118-1122.
    18. Yılmaz, Hasan & Çanakcı, Murad & Topakcı, Mehmet & Karayel, Davut & Yiğit, Mete & Ortaçeşme, Derya, 2023. "In-situ pelletization of campus biomass residues: Case study for Akdeniz University," Renewable Energy, Elsevier, vol. 212(C), pages 972-983.
    19. Acaroglu, Mustafa & Baser, Eyup & Aydogan, Hasan & Canli, Eyüb, 2022. "A new energy crop onopordum spp.: A research on biofuel properties," Energy, Elsevier, vol. 261(PB).
    20. Giuseppe Toscano & Vincenzo Alfano & Antonio Scarfone & Luigi Pari, 2018. "Pelleting Vineyard Pruning at Low Cost with a Mobile Technology," Energies, MDPI, vol. 11(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6144-:d:1537724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.